在體光纖成像記錄人類大量的復(fù)雜行為主要取決于上千億個(gè)神經(jīng)元組成的精確神經(jīng)環(huán)路,而神經(jīng)環(huán)路的建立依賴于神經(jīng)元之間突觸連接的形成。突觸是神經(jīng)元交流的關(guān)鍵結(jié)構(gòu),只有通過突觸連接,神經(jīng)元之間以及神經(jīng)元和靶向細(xì)胞(包括肌肉,腺體分析的細(xì)胞)才能有效的傳遞信號,因此突觸連接是神經(jīng)信息傳遞的關(guān)鍵結(jié)構(gòu)。當(dāng)突觸的發(fā)育或者形成后維持發(fā)生異常,將會導(dǎo)致某些神經(jīng)退行性疾病的發(fā)生,比如精神分裂癥和自閉癥。類似于線蟲的模式生物在體光纖成像記錄,成像系統(tǒng)需要具備以下幾個(gè)方面的功能: 線蟲對光非常敏感,在進(jìn)行共聚焦成像時(shí),需要盡量使用低的激發(fā)光強(qiáng)度,低激發(fā)光帶來的熒光信號的降低,獲得更高信噪比的圖像,要求共聚焦系統(tǒng)具有較高的靈敏度。在體光纖成像記錄的傳感應(yīng)用也非常具有前途。南京神經(jīng)元光纖成像記錄原理
光纖成像系統(tǒng),所述光纖成像系統(tǒng)包括:激光器,圖像采集裝置,首先一多模光纖,第二多模光纖,光纖耦合器和第三多模光纖;所述光纖耦合器包括兩個(gè)首先一端口和一個(gè)第二端口,兩個(gè)首先一端口位于所述光纖耦合器的一側(cè),所述第二端口位于所述光纖耦合器的另一側(cè);所述首先一多模光纖的一端與所述光纖耦合器的一個(gè)首先一端口連接,所述第二多模光纖的一端與所述光纖耦合器的另一個(gè)首先一端口連接;所述第三多模光纖的一端與所述光纖耦合器的第二端口連接,所述首先一多模光纖的另一端位于所述激光器發(fā)出光束方向的正前方,且所述激光器的輸出端口的中心點(diǎn)和所述首先一多模光纖的另一端的中心點(diǎn)位于同一直線上。黃石鈣熒光光纖成像記錄方案在體光纖成像記錄另一端的中心點(diǎn)位于同一直線上。
在體光纖成像記錄在自由活動動物的深部腦區(qū)實(shí)現(xiàn)光信號記錄和神經(jīng)細(xì)胞活性調(diào)控;高質(zhì)量,亞細(xì)胞分辨率的成像;多波長成像,實(shí)現(xiàn)較多的鈣離子成像(GCaMP or RCaMP),和光遺傳實(shí)驗(yàn),特定目標(biāo)光刺激;在體光纖成像系統(tǒng)是模塊化設(shè)計(jì),使用者擁有很高的靈活性,可以隨時(shí)根據(jù)研究需要對系統(tǒng)進(jìn)行調(diào)整,比如調(diào)整光源,波長,濾光片,相機(jī)等。在深部腦區(qū)選定的特定神經(jīng)細(xì)胞或部分獲得連續(xù)的實(shí)驗(yàn)數(shù)據(jù)流,然后對單細(xì)胞提取密度軌跡。鈣離子成像軌跡也可以被同步,與其他行為學(xué)實(shí)驗(yàn)(攝像拍攝,獎勵設(shè)備等)同步時(shí)間標(biāo)記。
在體光纖成像記錄是了解生物體組織結(jié)構(gòu),闡明生物體各種生理功能的一種重要研究手段。它利用光學(xué)或電子顯微鏡直接獲得生物細(xì)胞和組織的微觀結(jié)構(gòu)圖像,通過對所得圖像的分析來了解生物細(xì)胞的各種生理過程。近年來,隨著光學(xué)成像技術(shù)的發(fā)展,尤其是數(shù)字化成像技術(shù)和計(jì)算機(jī)圖像分析技術(shù)的引進(jìn),生物成像技術(shù)已經(jīng)成為細(xì)胞生物學(xué)研究中不可或缺的方法。未來生物成像技術(shù)的發(fā)展除了進(jìn)一步提高圖像的分辨率外,還需要增強(qiáng)成像的實(shí)時(shí)性和連續(xù)性,以期實(shí)現(xiàn)對單個(gè)生物功能分子的體內(nèi)連續(xù)追蹤,詳細(xì)地記錄其生理過程,從而完全揭示其生物學(xué)功能。另外,生物成像技術(shù)在臨床醫(yī)學(xué)診斷中的應(yīng)用也越來越受到重視,發(fā)展無損傷的體內(nèi)成像技術(shù)是其在疾病診斷中較多應(yīng)用的重要前提。在體光纖成像記錄用于生成首先一光束。
在體光纖成像記錄和傳統(tǒng)的體外成像或細(xì)胞培養(yǎng)相比有著明顯優(yōu)點(diǎn)。首先,在體光纖成像記錄能夠反映細(xì)胞或基因表達(dá)的空間和時(shí)間分布,從而了解活的物體動物體內(nèi)的相關(guān)生物學(xué)過程、特異性基因功能和相互作用。由于可以對同一個(gè)研究個(gè)體進(jìn)行長時(shí)間反復(fù)查看成像,既可以進(jìn)步數(shù)據(jù)的可比性,避免個(gè)體差異對試驗(yàn)結(jié)果的可影響,又不需要?dú)⑺滥J絼游?,?jié)省了大筆科研用度。第三,尤其在藥物開發(fā)方面,在體光纖成像記錄更是具有劃時(shí)代的意義。根據(jù)統(tǒng)計(jì)結(jié)果,由于進(jìn)進(jìn)臨床研究的藥物中大部分由于安全題目而終止,導(dǎo)致了在臨床研究中大量的資金浪費(fèi)。在體光纖成像記錄提供含有光子強(qiáng)度標(biāo)尺的成像圖片。南京神經(jīng)元光纖成像記錄原理
在體光纖成像記錄需要許多數(shù)據(jù)點(diǎn)。南京神經(jīng)元光纖成像記錄原理
光纖成像技術(shù)具有損耗低、成本低等優(yōu)勢,因此,光纖成像技術(shù)較多應(yīng)用于生物醫(yī)學(xué)、激光技術(shù)等領(lǐng)域。早期的光纖成像系統(tǒng)采用多根單模光纖組成的光纖束收集圖像,每一根單模光纖用于收集一個(gè)像素點(diǎn)的圖像。包含較多的單模光纖,導(dǎo)致光纖束的直徑較大,因此,為了提高光纖成像系統(tǒng)的微型化程度,可以將光纖成像系統(tǒng)中的光纖束替換為單根多模光纖?,F(xiàn)有技術(shù)中的光纖成像系統(tǒng)仍包含多根多模光纖,若待成像物體所處環(huán)境的空間較窄,例如,待成像物體所處環(huán)境為血管,支氣管等,可能會導(dǎo)致該光纖成像系統(tǒng)中的多根多模光纖無法進(jìn)入待成像物體所處環(huán)境,也就無法獲取到待成像物體的圖像,導(dǎo)致光纖成像系統(tǒng)的適用范圍較窄。南京神經(jīng)元光纖成像記錄原理