電機狀態(tài)監(jiān)測和故障診斷技術(shù)是一種了解和掌握電機在使用過程中狀態(tài),確定其整體或局部正?;虍惓?,早期發(fā)現(xiàn)故障及其原因,并能預(yù)報故障發(fā)展趨勢的技術(shù),電機狀態(tài)監(jiān)測與故障診斷技術(shù)包括識別電機狀態(tài)監(jiān)測和預(yù)測發(fā)展趨勢兩方面。設(shè)備狀態(tài)是指設(shè)備運行的工況,由設(shè)備運行過程中的各種性能參數(shù)以及設(shè)備運行過程中產(chǎn)生的二次效應(yīng)參數(shù)和產(chǎn)品質(zhì)量指標(biāo)參數(shù)來描述。設(shè)備狀態(tài)的類型包括:正常、異常和故障三種。設(shè)備狀態(tài)監(jiān)測是通過測定以上參數(shù),并進行分析處理,根據(jù)分析處理結(jié)果判定設(shè)備狀態(tài)。對設(shè)備進行定期或連續(xù)監(jiān)測,包括采用各種測試、分析判別方法,結(jié)合設(shè)備的歷史狀況和運行條件,弄清設(shè)備的客觀狀態(tài),獲取設(shè)備性能發(fā)展的趨勢規(guī)律,為設(shè)備的性能評價、合理使用、安全運行、故障診斷及設(shè)備自動控制打下基礎(chǔ)。電機故障現(xiàn)代分析方法:基于信號變換的診斷方法電機設(shè)備的許多故障信息是以調(diào)制的形式存在于所監(jiān)測的電氣信號及振動信號之中,如果借助于某種變換對這些信號進行解調(diào)處理,就能方便地獲得故障特征信息,以確定電機設(shè)備所發(fā)生的故障類型。常用的信號變換方法有希爾伯特變換和小波變換。設(shè)備監(jiān)測可以滿足對部件疲勞程度診斷、機械摩擦磨損、機械沖擊、部件過熱等健康狀況問題的實時預(yù)警。上海電力監(jiān)測介紹
在預(yù)防性維護的應(yīng)用中,振動是大型旋轉(zhuǎn)等設(shè)備即將發(fā)生故障的重要指標(biāo),一是在大型旋轉(zhuǎn)機械設(shè)備的所有故障中,振動問題出現(xiàn)的概率比較高;另一方面,振動信號包含了豐富的機械及運行的狀態(tài)信息;第三,振動信號易于拾取,便于在不影響機械運行的情況下實行在線監(jiān)測和診斷。旋轉(zhuǎn)類設(shè)備的預(yù)防性維護需要重點監(jiān)控振動量變化。其預(yù)測性診斷技術(shù)對于制造業(yè)、風(fēng)電等的行業(yè)的運維具有非常重大的意義。通過設(shè)備振動等狀態(tài)的預(yù)測性維護,可以及時發(fā)現(xiàn)并解決系統(tǒng)及零部件存在問題。但是對于一些不是因為設(shè)備問題而存在的固有振動,振動強度不必要增加會對部件產(chǎn)生有害的力,危及設(shè)備的使用壽命和質(zhì)量。在這種情況下,則需要采用振動隔離技術(shù)來解決和干預(yù),有效抑制振動和噪聲危害,避免設(shè)備故障和流程關(guān)閉。無錫智能監(jiān)測數(shù)據(jù)通過監(jiān)測電機振動的頻率和振幅,可以評估電機軸承和其他旋轉(zhuǎn)部件的狀況。
故障預(yù)測與健康管理是以工業(yè)監(jiān)測數(shù)據(jù)為基礎(chǔ),通過高等數(shù)學(xué)、數(shù)學(xué)優(yōu)化、統(tǒng)計概率、信號處理、機器學(xué)習(xí)和統(tǒng)計學(xué)習(xí)等技術(shù)搭建模型算法,實現(xiàn)產(chǎn)品和裝備的狀態(tài)監(jiān)測、故障診斷及壽命預(yù)測,為產(chǎn)品和裝備的正常運行保駕護航,從而提高其安全性和可靠性。故障預(yù)測與健康管理是以工業(yè)監(jiān)測數(shù)據(jù)為基礎(chǔ),通過高等數(shù)學(xué)、數(shù)學(xué)優(yōu)化、統(tǒng)計概率、信號處理、機器學(xué)習(xí)和統(tǒng)計學(xué)習(xí)等技術(shù)搭建模型算法,實現(xiàn)產(chǎn)品和裝備狀態(tài)監(jiān)測、故障診斷及壽命預(yù)測,為產(chǎn)品和裝備的正常運行保駕護航,從而提高其安全性和可靠性。近年來我們提出的標(biāo)準(zhǔn)化平方包絡(luò)和數(shù)學(xué)框架以及準(zhǔn)算數(shù)均值比數(shù)學(xué)框架指引了稀疏測度構(gòu)造的新方向,同時發(fā)現(xiàn)了大量與基尼指數(shù)、峭度、香農(nóng)熵等具有等價性能的稀疏測度?;跇?biāo)準(zhǔn)化平方包絡(luò)和數(shù)學(xué)框架以及凸優(yōu)化技術(shù),提出了在線更新模型權(quán)重可解釋的機器學(xué)習(xí)算法,可以利用模型權(quán)重來實時確認(rèn)故障特征頻率,解決了狀態(tài)監(jiān)測與故障診斷領(lǐng)域傳統(tǒng)機器學(xué)習(xí)只能輸出狀態(tài),而無法提供故障特征來確認(rèn)輸出狀態(tài)的難題。
汽車傳動系統(tǒng)疲勞驗證通常采用模擬實際使用條件的方法,包括以下步驟:試驗樣本準(zhǔn)備:選擇一定數(shù)量的變速器樣本,確保它們生產(chǎn)批次的典型特征。樣本應(yīng)該經(jīng)過嚴(yán)格的質(zhì)量檢查,以排除制造缺陷。設(shè)定試驗條件:根據(jù)變速器的設(shè)計和使用條件,制定試驗計劃,包括轉(zhuǎn)速、負(fù)載、溫度、濕度等參數(shù)。試驗條件應(yīng)盡量接近實際使用條件。進行試驗:將試驗樣本安裝在試驗臺或?qū)嶒炣囕v上,按照設(shè)定的條件進行長時間運行。期間監(jiān)測變速器的性能和損傷情況。數(shù)據(jù)分析:收集試驗數(shù)據(jù),包括振動、溫度、壓力等參數(shù),對數(shù)據(jù)進行分析,評估變速器的性能和壽命。壽命預(yù)測:基于試驗數(shù)據(jù)和相關(guān)理論,預(yù)測變速器的疲勞壽命,確定在何種條件下需要維修或更換變速器。結(jié)果報告:將試驗結(jié)果整理成報告,包括變速器的疲勞壽命、性能評估、建議的維修和保養(yǎng)計劃等信息。
智能監(jiān)診系統(tǒng)是一種測量系統(tǒng),用于在動態(tài)條件下對汽車傳動系統(tǒng)(如變速箱,車橋,傳動軸以及發(fā)動機)進行早期損壞檢測。通過將當(dāng)前的振動指標(biāo)與先前“學(xué)習(xí)階段”參考值進行比較,它可以探測出傳動系統(tǒng)內(nèi)部部件的相關(guān)變化。該系統(tǒng)將幫助產(chǎn)品開發(fā)工程師在傳動系統(tǒng)內(nèi)部部件失效之前檢測出“原始”缺陷。 工業(yè)監(jiān)測技術(shù)可以幫助企業(yè)降低能源消耗和環(huán)境污染。
設(shè)備狀態(tài)監(jiān)測和故障診斷技術(shù)是設(shè)備維護手段之一。設(shè)備的故障監(jiān)測診斷技術(shù),就是利用科學(xué)的檢測方法和現(xiàn)代化技術(shù)手段,對設(shè)備目前的運行狀態(tài)進行監(jiān)測和排查,從而判斷出設(shè)備運行狀態(tài)的可靠性,確認(rèn)其局部或整機是否正常運行。煤礦用機電設(shè)備溫度振動監(jiān)測系統(tǒng)用于煤礦主扇、壓風(fēng)機、鋼絲繩牽引帶式輸送機、滾筒帶式輸送機、排水泵和電動機、提升機等,有助于掌握設(shè)備運行工況中的溫度振動數(shù)據(jù)。提升機、鋼絲繩牽引、滾筒帶式輸送機、皮帶機、空壓機、壓風(fēng)機、水泵等煤礦機電設(shè)備要求增加電動機及主要軸承溫度和振動監(jiān)測。裝置功能:1、提升機、水泵、皮帶機等設(shè)備電動機主軸承溫度振動在線監(jiān)測2、礦用高壓異步電動機軸承溫度振動檢測診斷3、提升機、水泵、皮帶機等設(shè)備滾筒主軸承溫度振動在線監(jiān)測4、井下大型機電設(shè)備電動機及主要軸承溫度振動在線監(jiān)測5、可以同時收集電機前后軸承溫度及電機振動量的數(shù)值,對收到的信息分析處理6、系統(tǒng)提供網(wǎng)絡(luò)接口,可直接與智能礦山網(wǎng)絡(luò)相連,也可與其它網(wǎng)絡(luò)內(nèi)的系統(tǒng)連接;7、在線系統(tǒng)軟件可實時監(jiān)測任意通道頻譜,時域波形、趨勢、三維譜圖和坐標(biāo)圖,還可通過互聯(lián)網(wǎng)進行遠程監(jiān)測。刀具健康狀態(tài)監(jiān)測應(yīng)用越來越廣,用來確保切削工具的性能、壽命和安全性。上海降噪監(jiān)測
利用數(shù)據(jù)分析和機器學(xué)習(xí)算法來分析設(shè)備狀態(tài)數(shù)據(jù),識別異常模式,并預(yù)測潛在故障。提高監(jiān)測的準(zhǔn)確性和效率。上海電力監(jiān)測介紹
傳統(tǒng)方法通常無法自適應(yīng)提取特征, 同時需要一定的離線數(shù)據(jù)訓(xùn)練得到檢測模型, 但目標(biāo)對象在線場景下采集到的數(shù)據(jù)有限, 且其數(shù)據(jù)分布與訓(xùn)練數(shù)據(jù)的分布可能因隨機噪聲、變工況等原因而存在差異, 導(dǎo)致離線訓(xùn)練的模型并不完全適合于在線數(shù)據(jù), 容易降低檢測結(jié)果的準(zhǔn)確性; 其次, 上述方法通常采用基于異常點的檢測算法, 未充分考慮樣本前后的時序關(guān)系, 容易因數(shù)據(jù)微小波動而產(chǎn)生誤報警, 降低檢測結(jié)果的魯棒性; 再次, 為降低誤報警, 這類方法需要反復(fù)調(diào)整報警閾值. 此外, 基于系統(tǒng)分析的故障診斷方法利用狀態(tài)空間描述建立機理模型, 可獲得理想的診斷和檢測結(jié)果, 但這類方法通常需要提前知道系統(tǒng)運動方程等信息, 對于軸承運行來說, 這類信息通常不易獲知. 近年來, 深度神經(jīng)網(wǎng)絡(luò)已被成功應(yīng)用于早期故障特征自動提取和識別, 可自適應(yīng)地提取信息豐富和判別能力強的深度特征, 因此具有較好的普適性. 但是, 這類方法一方面需要大量輔助數(shù)據(jù)進行模型訓(xùn)練, 而歷史采集的輔助數(shù)據(jù)與目標(biāo)對象數(shù)據(jù)可能存在較大不同, 直接訓(xùn)練并不能有效提升在線檢測的特征表示效果; 另一方面, 在訓(xùn)練過程中未能針對早期故障引發(fā)的狀態(tài)變化而有目的地強化相應(yīng)特征表示. 因此, 深度學(xué)習(xí)方法在早期故障在線監(jiān)測中的應(yīng)用仍存在較大的提升空間.上海電力監(jiān)測介紹