電機是工業(yè)領(lǐng)域中使用的動力設(shè)備,其性能和安全性對于整個生產(chǎn)過程具有重要影響。為了確保電機的正常運行和延長使用壽命,電機監(jiān)測技術(shù)成為了關(guān)鍵的保障措施。一、電機監(jiān)測的重要性電機監(jiān)測可以實時監(jiān)測電機的運行狀態(tài),包括溫度、電流、電壓、振動等參數(shù),從而及時發(fā)現(xiàn)潛在的問題和故障。通過電機監(jiān)測,可以避免因電機故障導(dǎo)致的生產(chǎn)中斷和設(shè)備損壞,降低維修成本,提高生產(chǎn)效率。同時,電機監(jiān)測還可以為預(yù)防性維護(hù)提供數(shù)據(jù)支持,幫助企業(yè)制定合理的維護(hù)計劃,延長設(shè)備使用壽命。二、電機監(jiān)測的方法溫度監(jiān)測:通過溫度傳感器實時監(jiān)測電機的溫度變化,確保電機在正常溫度范圍內(nèi)運行。當(dāng)溫度過高時,可以及時采取措施防止電機過熱。電流監(jiān)測:通過電流傳感器實時監(jiān)測電機的電流變化,判斷電機的負(fù)載情況和運行狀態(tài)。當(dāng)電流異常時,可以及時發(fā)現(xiàn)電機故障或過載情況。電壓監(jiān)測:通過電壓傳感器實時監(jiān)測電機的電壓變化,確保電機在正常電壓范圍內(nèi)運行。當(dāng)電壓過高或過低時,可以及時采取措施防止電機損壞。振動監(jiān)測:通過振動傳感器實時監(jiān)測電機的振動情況,判斷電機的運行狀態(tài)和潛在故障。當(dāng)振動異常時,可以及時發(fā)現(xiàn)電機軸承磨損、不平衡等問題。監(jiān)測結(jié)果的分析可以幫助我們了解產(chǎn)品的優(yōu)勢和不足之處。南京電機監(jiān)測控制策略
基于數(shù)據(jù)的故障檢測與診斷方法能夠?qū)A抗I(yè)數(shù)據(jù)進(jìn)行統(tǒng)計分析和特征提取,將系統(tǒng)的狀態(tài)分為正常運行狀態(tài)和故障狀態(tài),可視為模式識別任務(wù)。故障檢測是判斷系統(tǒng)是否處于預(yù)期的正常運行狀態(tài),判斷系統(tǒng)是否發(fā)生異常故障,相當(dāng)于一個二分類任務(wù)。故障診斷是在確定發(fā)生故障的時候判斷系統(tǒng)處于哪一種故障狀態(tài),相當(dāng)于一個多分類任務(wù)。因此,故障檢測和診斷技術(shù)的研究類似于模式識別,分為4個的步驟:數(shù)據(jù)獲取、特征提取、特征選擇和特征分類。1)數(shù)據(jù)獲取步驟是從過程系統(tǒng)收集可能影響過程狀態(tài)的信號,包括溫度、流量等過程變量;2)特征提取步驟是將采集的原始信號映射為有辨識度的狀態(tài)信息;3)特征選擇步驟是將與狀態(tài)變化相關(guān)的變量提取出來;4)特征分類步驟是通過算法將前幾步中選擇的特征進(jìn)行故障檢測與診斷。在大數(shù)據(jù)這一背景下,傳統(tǒng)的基于數(shù)據(jù)的故障檢測與診斷方法被廣泛應(yīng)用,但是,這些方法有一些共同的缺點:特征提取需要大量的知識和信號處理技術(shù),并且對于不同的任務(wù),沒有統(tǒng)一的程序來完成。此外,常規(guī)基于機器學(xué)習(xí)的方法結(jié)構(gòu)較淺,在提取信號的高維非線性關(guān)系方面能力有限。常州減振監(jiān)測系統(tǒng)工業(yè)生產(chǎn)過程中的溫度、濕度等參數(shù)需要進(jìn)行監(jiān)測檢測,以確保生產(chǎn)的穩(wěn)定性和效率。
作為工業(yè)領(lǐng)域的一種關(guān)鍵旋轉(zhuǎn)設(shè)備,對于終端用來說,關(guān)于電機維護(hù)的主要是電氣班組的設(shè)備工程師、電機維護(hù)工程師、檢修人員等;對于電機廠家以及電機經(jīng)銷商來說,主要是電機售后服務(wù)工程師、電機銷售人員,會涉及到電機的運行維護(hù);險此之外,還有第三方檢修人員等。目前已經(jīng)有很多智能產(chǎn)品號稱可以實現(xiàn)電機的預(yù)測性維護(hù),但問題也非常多。1)傳感器安裝難。設(shè)備狀態(tài)監(jiān)測需要振動、噪聲、溫度傳感器,通訊協(xié)議并不統(tǒng)一,自成體系,安裝、使用、維護(hù)成本高昂。2)技術(shù)成本高。工業(yè)場景設(shè)備類型多,運行工況復(fù)雜,預(yù)測性維護(hù)算法涉及數(shù)據(jù)預(yù)處理、工業(yè)機理、機器學(xué)習(xí),技術(shù)要求很高。3)時間成本高。預(yù)測性維護(hù)要實現(xiàn),前期需要大量歷史數(shù)據(jù)的支撐,數(shù)據(jù)采集、歸納、分析是一個漫長的過程。電機智能運維,雖然被各大宣傳媒體提得很多,但還遠(yuǎn)遠(yuǎn)未到落地很好乃至普及的程度,不論是預(yù)測性維護(hù)的預(yù)測效果,還是電機的智能運維的市場推廣以及市場接受程度,對于電機運維來說,都還有很遠(yuǎn)的一段距離!
包括船舶的燃油系統(tǒng)、氣缸系統(tǒng)、冷卻水系統(tǒng)、渦輪增壓系統(tǒng)、空氣系統(tǒng)、滑油系統(tǒng)、其他軸承連桿運動部件等,并通過大數(shù)據(jù)分析,為船舶管理者提供精確的決策支持。此外,該系統(tǒng)還具有強大的自我學(xué)習(xí)和優(yōu)化能力,具備知識庫自學(xué)習(xí)、識別診斷定位等能力,以提高船舶的運行效率和安全性。其關(guān)鍵技術(shù)包括了工況學(xué)習(xí)、振動分析、自回歸模型、神經(jīng)網(wǎng)絡(luò)等智能算法應(yīng)用。船研所的負(fù)責(zé)人表示:InsightlO智能監(jiān)測系統(tǒng)的交付,是盈蓓德對船舶行業(yè)智能化發(fā)展的重要貢獻(xiàn)。該系統(tǒng)將極大地提高船舶的管理效率和運行安全性,標(biāo)志著船舶行業(yè)在智能化運維和能效監(jiān)控方面邁出了重要的一步,為船舶行業(yè)的發(fā)展開啟新的篇章。據(jù)了解,InsightlO智能監(jiān)測系統(tǒng)已經(jīng)在多艘船舶上進(jìn)行了試運行,并取得了明顯的效果。試運行結(jié)果顯示,該系統(tǒng)能夠有效地提高船舶的運行效率,降低燃料消耗,同時,也能夠提前發(fā)現(xiàn)和預(yù)防潛在的安全隱患,極大提高了船舶的安全性。此次成功交付InsightlO智能監(jiān)測系統(tǒng),將為該中心的研究工作提供強有力的支持,并推動船舶行業(yè)智能化發(fā)展。盈蓓德科技表示,他們將繼續(xù)投入更多資源和精力,不斷優(yōu)化InsightlO智能監(jiān)測系統(tǒng)的功能和性能,以滿足船舶行業(yè)不斷增長的需求。同時。監(jiān)測結(jié)果的反饋可以幫助我們改進(jìn)產(chǎn)品的設(shè)計和功能。
隨著電力電子技術(shù)、自動化控制技術(shù)的不斷發(fā)展,電機在工業(yè)生產(chǎn)以及家用電器中得到了應(yīng)用,在市場競爭中正逐步顯示自己的優(yōu)勢。傳統(tǒng)的電機在線監(jiān)測裝置多采用電流表、電壓表、功率表等較為原始的儀表來進(jìn)行測量,采用人工讀數(shù)的方式進(jìn)行數(shù)據(jù)的測量、記錄和分析,這不僅硬件冗余,系統(tǒng)雜亂,而且操作極為不便,更有甚者,讀數(shù)誤差大,測試結(jié)果不準(zhǔn)確。有些場合需要進(jìn)行電機多種參數(shù)的監(jiān)測,這樣就勢必會加大各種測量儀器的使用以及人力資源的投入。傳統(tǒng)的監(jiān)測方法要求監(jiān)測人員具有較高的技能和水平,但是由于人為誤差的不可避免,這種監(jiān)測方法無法做定量分析,無法更加準(zhǔn)確、實時掌握電機的運行狀態(tài)和故障。技術(shù)實現(xiàn)要素:本發(fā)明提出了一種電機在線監(jiān)測裝置和方法,通過對扭矩、轉(zhuǎn)速、各相電流、電壓、溫度、功率和效率進(jìn)行實時動態(tài)的監(jiān)測以及對過電壓、過電流、過熱進(jìn)行報警停機,解決現(xiàn)有技術(shù)中監(jiān)測參數(shù)不能定量分析以及無法更加準(zhǔn)確、實時的掌握電機運行狀態(tài)和故障的技術(shù)問題。工業(yè)監(jiān)測數(shù)據(jù)可以幫助企業(yè)進(jìn)行市場分析和競爭策略制定。常州動力設(shè)備監(jiān)測公司
監(jiān)測結(jié)果的反饋可以幫助我們改進(jìn)產(chǎn)品的質(zhì)量和性能。南京電機監(jiān)測控制策略
傳統(tǒng)方法通常無法自適應(yīng)提取特征, 同時需要一定的離線數(shù)據(jù)訓(xùn)練得到檢測模型, 但目標(biāo)對象在線場景下采集到的數(shù)據(jù)有限, 且其數(shù)據(jù)分布與訓(xùn)練數(shù)據(jù)的分布可能因隨機噪聲、變工況等原因而存在差異, 導(dǎo)致離線訓(xùn)練的模型并不完全適合于在線數(shù)據(jù), 容易降低檢測結(jié)果的準(zhǔn)確性; 其次, 上述方法通常采用基于異常點的檢測算法, 未充分考慮樣本前后的時序關(guān)系, 容易因數(shù)據(jù)微小波動而產(chǎn)生誤報警, 降低檢測結(jié)果的魯棒性; 再次, 為降低誤報警, 這類方法需要反復(fù)調(diào)整報警閾值. 此外, 基于系統(tǒng)分析的故障診斷方法利用狀態(tài)空間描述建立機理模型, 可獲得理想的診斷和檢測結(jié)果, 但這類方法通常需要提前知道系統(tǒng)運動方程等信息, 對于軸承運行來說, 這類信息通常不易獲知.
近年來, 深度神經(jīng)網(wǎng)絡(luò)已被成功應(yīng)用于早期故障特征的自動提取和識別, 可自適應(yīng)地提取信息豐富和判別能力強的深度特征, 因此具有較好的普適性. 但是, 這類方法一方面需要大量的輔助數(shù)據(jù)進(jìn)行模型訓(xùn)練, 而歷史采集的輔助數(shù)據(jù)與目標(biāo)對象數(shù)據(jù)可能存在較大不同, 直接訓(xùn)練并不能有效提升在線檢測的特征表示效果; 另一方面, 在訓(xùn)練過程中未能針對早期故障引發(fā)的狀態(tài)變化而有目的地強化相應(yīng)特征表示. 因此, 深度學(xué)習(xí)方法在早期故障在線監(jiān)測中的應(yīng)用仍存在較大的提升空間. 南京電機監(jiān)測控制策略