現(xiàn)代電力系統(tǒng)中發(fā)電機(jī)的單機(jī)容量越大型發(fā)電機(jī)在電力生產(chǎn)中處于主力位置,同時大型發(fā)電機(jī)造價昂貴,結(jié)構(gòu)復(fù)雜,一旦遭受損壞,需要的檢修期長,因此要求有極高的運(yùn)行可靠性。就我國今后很長一段時間內(nèi)的缺電、用電緊張的狀況而言,發(fā)電機(jī)的年運(yùn)行小時數(shù)目和滿負(fù)荷率都較以往高出很多,備用容量很少的情況下,其運(yùn)行可靠性顯得尤為重要和突出。因此對大型機(jī)組進(jìn)行在線監(jiān)測與診斷,做到早期預(yù)警以防止事故的發(fā)生或擴(kuò)大具有重要的現(xiàn)實(shí)意義。通常對發(fā)電機(jī)的“監(jiān)測”與“診斷”在內(nèi)容上并無明確的劃分界限,可以說監(jiān)測數(shù)據(jù)和結(jié)果即為診斷的依據(jù)。監(jiān)測利用各種傳感器在電機(jī)運(yùn)行時對電機(jī)的狀態(tài)提取相關(guān)數(shù)據(jù)。故障診斷使用計算機(jī)及其相應(yīng)智能軟件,根據(jù)傳感器提供的信息,對故障進(jìn)行分類、定位,確定故障的嚴(yán)重程度并提出處理意見。因此狀態(tài)監(jiān)測和故障診斷是一項(xiàng)工作的兩個部分,前者是后者的基礎(chǔ),后者是前者的分析與綜合。電機(jī)狀態(tài)監(jiān)測技術(shù)可幫助運(yùn)行維護(hù)人員擺脫被動檢修和不太理想的定期檢修的困境,按照設(shè)備內(nèi)部實(shí)際的運(yùn)行狀況,合理安排檢修工作,實(shí)現(xiàn)所謂“預(yù)知”維修。這樣既可避免由于設(shè)備突然損壞,停止運(yùn)行帶來的損失,又可充分發(fā)揮設(shè)備的作用。在監(jiān)測過程中,我們需要密切關(guān)注數(shù)據(jù)的變化情況。寧波狀態(tài)監(jiān)測數(shù)據(jù)
從整體的網(wǎng)絡(luò)架構(gòu)來看,智能振動噪聲監(jiān)診子系統(tǒng)利用安裝在設(shè)備上傳感器節(jié)點(diǎn)獲取設(shè)備的健康狀態(tài)監(jiān)測信號和運(yùn)行參數(shù)數(shù)據(jù),經(jīng)網(wǎng)絡(luò)層集中上傳至設(shè)備健康監(jiān)測物聯(lián)網(wǎng)綜合管理平臺,實(shí)現(xiàn)數(shù)據(jù)傳輸。應(yīng)用層實(shí)現(xiàn)監(jiān)測信號的分析?故障特征提取?故障診斷及預(yù)測功能,實(shí)現(xiàn)智能化管理?應(yīng)用和服務(wù)。設(shè)備健康監(jiān)測物聯(lián)網(wǎng)綜合管理平臺具有強(qiáng)大的數(shù)據(jù)采集分析處理?數(shù)據(jù)可視?設(shè)備運(yùn)維?故障診斷?故障報警等功能。通過實(shí)時監(jiān)測查看?統(tǒng)計?追溯,實(shí)現(xiàn)對其管轄設(shè)備的實(shí)時監(jiān)測和運(yùn)行維護(hù),基于運(yùn)行信息和檢修信息?自動生成設(shè)備管理報表,實(shí)現(xiàn)設(shè)備可靠性?故障數(shù)據(jù)?更換備件等信息統(tǒng)計,為維修方案提供依據(jù)。專業(yè)監(jiān)測數(shù)據(jù)監(jiān)測結(jié)果的分析可以幫助我們了解市場的競爭格局和市場份額。
智能船舶是指基于“網(wǎng)絡(luò)平臺”的信息技術(shù)應(yīng)用,以“大數(shù)據(jù)”為基礎(chǔ),通過數(shù)據(jù)分析和數(shù)據(jù)處理,實(shí)現(xiàn)運(yùn)行船舶的智能感知、判斷分析和決策控制,從技術(shù)、設(shè)備、管理等多個層面保證船舶航行的安全和效率,大幅減少甚至杜絕人為或外部因素造成的各種事故。其主要目標(biāo)就是安全、經(jīng)濟(jì)、高效、環(huán)保。而智能機(jī)艙是通過綜合狀態(tài)監(jiān)測系統(tǒng)所獲得的設(shè)備信息和數(shù)據(jù),實(shí)現(xiàn)對機(jī)艙內(nèi)機(jī)械設(shè)備的運(yùn)行狀態(tài)、健康狀況進(jìn)行分析和評估,進(jìn)而完成設(shè)備操作輔助決策和維護(hù)保養(yǎng)計劃的綜合管控系統(tǒng)。它能及時地、準(zhǔn)確地對多種異常狀態(tài)或故障狀態(tài)做出診斷,預(yù)防或消除故障,把故障損失降低到較低水平,同時對設(shè)備的運(yùn)行進(jìn)行必要的決策支持,提高設(shè)備運(yùn)行的可靠性、安全性和有效性,也能確定設(shè)備的良好維護(hù)時間,降低設(shè)備全壽命周期費(fèi)用,增加設(shè)備的穩(wěn)定性。近日,盈蓓德成功交付了InsightlO智能監(jiān)測系統(tǒng),就是智能船舶中的智能機(jī)艙系統(tǒng),這一創(chuàng)新技術(shù)將為船舶行業(yè)帶來全新的智能化管理體驗(yàn),標(biāo)志著船舶行業(yè)智能化新篇章的開啟。InsightlO智能監(jiān)測系統(tǒng)是盈蓓德經(jīng)過長期研發(fā)和測試的成果,該系統(tǒng)能夠?qū)崟r監(jiān)測機(jī)艙設(shè)備的各項(xiàng)運(yùn)行數(shù)據(jù)。
在工業(yè)現(xiàn)場的預(yù)防性維護(hù)應(yīng)用中,振動是大型旋轉(zhuǎn)等設(shè)備即將發(fā)生故障的重要指標(biāo),一是在大型旋轉(zhuǎn)機(jī)械設(shè)備的所有故障中,振動問題出現(xiàn)的概率比較高;另一方面,振動信號包含了豐富的機(jī)械及運(yùn)行的狀態(tài)信息;第三,振動信號易于拾取,便于在不影響機(jī)械運(yùn)行的情況下實(shí)行在線監(jiān)測和診斷。旋轉(zhuǎn)類設(shè)備的預(yù)防性維護(hù)需要重點(diǎn)監(jiān)控振動量的變化。其預(yù)測性診斷技術(shù)對于制造業(yè)、風(fēng)電等的行業(yè)的運(yùn)維具有非常重大的意義。通過設(shè)備振動等狀態(tài)的預(yù)測性維護(hù),可以及時發(fā)現(xiàn)并解決系統(tǒng)及零部件存在問題。但是對于一些不是因?yàn)樵O(shè)備問題而存在的固有振動,振動強(qiáng)度的不必要增加會對部件產(chǎn)生有害的力,危及設(shè)備的使用壽命和質(zhì)量。在這種情況下,則需要采用振動隔離技術(shù)來解決和干預(yù),有效抑制振動和噪聲的危害,避免設(shè)備故障和流程關(guān)閉。監(jiān)測結(jié)果的比較可以幫助我們評估不同地區(qū)的市場需求和潛力。
作為工業(yè)領(lǐng)域的一種關(guān)鍵旋轉(zhuǎn)設(shè)備,對于終端用來說,關(guān)于電機(jī)維護(hù)的主要是電氣班組的設(shè)備工程師、電機(jī)維護(hù)工程師、電機(jī)檢修人員等;對于電機(jī)廠家以及電機(jī)經(jīng)銷商來說,主要是電機(jī)售后服務(wù)工程師、電機(jī)銷售人員,會涉及到電機(jī)的運(yùn)行維護(hù);險此之外,還有第三方檢修人員等。目前已經(jīng)有很多智能產(chǎn)品號稱可以實(shí)現(xiàn)電機(jī)的預(yù)測性維護(hù),但問題也非常多。1)傳感器安裝難。設(shè)備狀態(tài)監(jiān)測需要振動、噪聲、溫度傳感器,通訊協(xié)議并不統(tǒng)一,自成體系,安裝、使用、維護(hù)成本高昂。2)技術(shù)成本高。工業(yè)場景設(shè)備類型多,運(yùn)行工況復(fù)雜,預(yù)測性維護(hù)算法涉及數(shù)據(jù)預(yù)處理、工業(yè)機(jī)理、機(jī)器學(xué)習(xí),技術(shù)要求很高。3)時間成本高。預(yù)測性維護(hù)要實(shí)現(xiàn),前期需要大量歷史數(shù)據(jù)支撐,數(shù)據(jù)采集、歸納、分析是一個漫長的過程。的電機(jī)智能運(yùn)維,雖然被各大宣傳媒體提得很多,但還遠(yuǎn)遠(yuǎn)未到落地很好乃至普及的程度,不論是預(yù)測性維護(hù)的預(yù)測效果,還是電機(jī)的智能運(yùn)維的市場推廣以及市場接受程度,對于電機(jī)運(yùn)維來說,都還有很遠(yuǎn)的一段距離!工業(yè)人員安全的監(jiān)測檢測是保障工人生命安全的必要措施,可以預(yù)防事故的發(fā)生。南京非標(biāo)監(jiān)測技術(shù)
工業(yè)監(jiān)測系統(tǒng)可以預(yù)測設(shè)備的故障并提前進(jìn)行維修。寧波狀態(tài)監(jiān)測數(shù)據(jù)
針對刀具磨損狀態(tài)在實(shí)際生產(chǎn)加工過程中難以在線監(jiān)測這一問題,提出一種通過通信技術(shù)獲取機(jī)床內(nèi)部數(shù)據(jù),對當(dāng)前的刀具磨損狀態(tài)進(jìn)行識別的方法。通過采集機(jī)床內(nèi)部實(shí)時數(shù)據(jù)并將其與實(shí)際加工情景緊密結(jié)合,能直接反映當(dāng)前加工狀態(tài)。將卷積神經(jīng)網(wǎng)絡(luò)用于構(gòu)建刀具磨損狀態(tài)識別模型,直接將采集到的數(shù)據(jù)作為輸入,得到了和傳統(tǒng)方法精度近似的預(yù)測模型,模型在訓(xùn)練集和在線驗(yàn)證試驗(yàn)中的表現(xiàn)都符合預(yù)期。刀具磨損狀態(tài)識別的方法在投入使用時還有一些問題有待解決:①現(xiàn)有數(shù)據(jù)是在相同的加工條件下測得的,而實(shí)際加工過程中,加工參數(shù)以及加工情景是不斷變化的,因此需要在下一步的研究中,進(jìn)行變參數(shù)試驗(yàn),考慮加工參數(shù)對于刀具磨損的影響,并針對常用的一些加工場景,建立不同的模型庫。變換加工場景時,通過獲取當(dāng)前場景,及時匹配相應(yīng)的預(yù)測模型即可。②本研究中的模型是一個固定的模型。今后需要根據(jù)實(shí)時的信號以及已知的磨損狀態(tài),對模型進(jìn)行實(shí)時更新,從而在實(shí)時監(jiān)測過程中實(shí)現(xiàn)自學(xué)習(xí),不斷提升模型的精度和預(yù)測效果。寧波狀態(tài)監(jiān)測數(shù)據(jù)