故障診斷可以根據(jù)狀態(tài)監(jiān)測系統(tǒng)提供信息來查明導(dǎo)致系統(tǒng)某種功能失調(diào)的原因或性質(zhì),判斷劣化發(fā)生的部位或部件,以及預(yù)測狀態(tài)劣化的發(fā)展趨勢等。電機(jī)故障診斷的基本方法主要有:1、電氣分析法,通過頻譜等信號分析方法對負(fù)載電流的波形進(jìn)行檢測從而診斷出電機(jī)設(shè)備故障的原因和程度;檢測局部放電信號;對比外部施加脈沖信號的響應(yīng)和標(biāo)準(zhǔn)響應(yīng)等;2、絕緣診斷法,利用各種電氣試驗(yàn)裝置和診斷技術(shù)對電機(jī)設(shè)備的絕緣結(jié)構(gòu)和參數(shù)、工作性能是否存在缺陷做出判斷,并對絕緣壽命做出預(yù)測;3、溫度檢測方法,采用各種溫度測量方法對電機(jī)設(shè)備各個部位的溫升進(jìn)行監(jiān)測,電機(jī)的溫升與各種故障現(xiàn)象相關(guān);4、振動與噪聲診斷法,通過對電機(jī)設(shè)備振動與噪聲的檢測,并對獲取的信號進(jìn)行處理,診斷出電機(jī)產(chǎn)生故障的原因和部位,尤其是對機(jī)械上的損壞診斷特別有效。5、化學(xué)診斷的方法,可以檢測到絕緣材料和潤滑油劣化后的分解物以及一些軸承、密封件的磨損碎屑,通過對比其中一些化學(xué)成分的含量,可以判斷相關(guān)部位元件的破壞程度。盈蓓德科技可以提供故障預(yù)判準(zhǔn)確率高,更經(jīng)濟(jì)更可靠的旋轉(zhuǎn)設(shè)備健康狀態(tài)監(jiān)測方案。無錫混合動力系統(tǒng)監(jiān)測數(shù)據(jù)
低信噪比微弱信號特征早期故障的信號處理。早期故障信息具有明顯的低信噪比微弱信號的特征,為實(shí)現(xiàn)早期故障有效分析,涉及方法包括:多傳感系統(tǒng)檢測及信息融合,非平穩(wěn)及非線性信號處理,故障征兆量和損傷征兆量信號分析,噪聲規(guī)律與特點(diǎn)分析,以及相關(guān)數(shù)據(jù)挖掘、盲源分離、粗糙集等方法。故障預(yù)測模型構(gòu)建。構(gòu)建基于智能信息系統(tǒng)的設(shè)備早期故障預(yù)測模型,這類模型大致有兩個途徑,分別是物理信息預(yù)測模型以及數(shù)據(jù)信息預(yù)測模型,或構(gòu)建這兩類預(yù)測模型相融合的預(yù)測模型。運(yùn)行狀態(tài)劣化的相關(guān)評價參數(shù)、模式及準(zhǔn)則。如表征設(shè)備狀態(tài)發(fā)展的參數(shù)及特征模式,狀態(tài)發(fā)展評價準(zhǔn)則及條件,面向安全保障的決策理論方法,穩(wěn)定性、可靠性及維修性評估依據(jù)及判據(jù)等。物聯(lián)網(wǎng)聲學(xué)監(jiān)控系統(tǒng),輔以其他設(shè)備參數(shù),通過物聯(lián)網(wǎng)技術(shù)實(shí)現(xiàn)設(shè)備狀態(tài)的遠(yuǎn)程感知,基于AI神經(jīng)網(wǎng)絡(luò)技術(shù),計算并提取設(shè)備音頻特征,從而實(shí)現(xiàn)設(shè)備運(yùn)行狀態(tài)實(shí)時評估與故障的早期識別。幫助企業(yè)用戶提升生產(chǎn)效率,保證生產(chǎn)安全,優(yōu)化生產(chǎn)決策。無錫混合動力系統(tǒng)監(jiān)測數(shù)據(jù)盈蓓德科技通過自主開發(fā)的軟件和算法,對數(shù)控機(jī)床的刀具質(zhì)量進(jìn)行監(jiān)測,提前預(yù)判刀具運(yùn)行情況。
電機(jī)狀態(tài)監(jiān)測和故障診斷技術(shù)是一種了解掌握電機(jī)在使用過程中的狀態(tài),確定其整體或局部正常或異常,早期發(fā)現(xiàn)故障及其原因,并能預(yù)報故障發(fā)展趨勢的技術(shù),電機(jī)狀態(tài)監(jiān)測與故障診斷技術(shù)包括識別電機(jī)狀態(tài)監(jiān)測和預(yù)測發(fā)展趨勢兩方面。設(shè)備狀態(tài)是指設(shè)備運(yùn)行的工況,由設(shè)備運(yùn)行過程中的各種性能參數(shù)以及設(shè)備運(yùn)行過程中產(chǎn)生的二次效應(yīng)參數(shù)和產(chǎn)品質(zhì)量指標(biāo)參數(shù)來描述。設(shè)備狀態(tài)的類型包括:正常、異常和故障三種。設(shè)備狀態(tài)監(jiān)測是通過測定以上參數(shù),并進(jìn)行分析處理,根據(jù)分析處理結(jié)果判定設(shè)備狀態(tài)。對設(shè)備進(jìn)行定期或連續(xù)監(jiān)測,包括采用各種測試、分析判別方法,結(jié)合設(shè)備的歷史狀況和運(yùn)行條件,弄清設(shè)備的客觀狀態(tài),獲取設(shè)備性能發(fā)展的趨勢規(guī)律,為設(shè)備的性能評價、合理使用、安全運(yùn)行、故障診斷及設(shè)備自動控制打下基礎(chǔ)。
針對刀具磨損狀態(tài)在實(shí)際生產(chǎn)加工過程中難以在線監(jiān)測這一問題,提出一種通過通信技術(shù)獲取機(jī)床內(nèi)部數(shù)據(jù),對當(dāng)前的刀具磨損狀態(tài)進(jìn)行識別的方法。通過采集機(jī)床內(nèi)部實(shí)時數(shù)據(jù)并將其與實(shí)際加工情景緊密結(jié)合,能直接反映當(dāng)前的加工狀態(tài)。將卷積神經(jīng)網(wǎng)絡(luò)用于構(gòu)建刀具磨損狀態(tài)識別模型,直接將采集到的數(shù)據(jù)作為輸入,得到了和傳統(tǒng)方法精度近似的預(yù)測模型,模型在訓(xùn)練集和在線驗(yàn)證試驗(yàn)中的表現(xiàn)都符合預(yù)期。刀具磨損狀態(tài)識別的方法在投入使用時還有一些問題有待解決:①現(xiàn)有數(shù)據(jù)是在相同的加工條件下測得的,而實(shí)際加工過程中,加工參數(shù)以及加工情景是不斷變化的,因此需要在下一步的研究中,進(jìn)行變參數(shù)試驗(yàn),考慮加工參數(shù)對于刀具磨損的影響,并針對常用的一些加工場景,建立不同的模型庫。變換加工場景,通過獲取當(dāng)前場景,及時匹配相應(yīng)的預(yù)測模型即可。②本研究中的模型是一個固定的模型。今后需要根據(jù)實(shí)時的信號以及已知的磨損狀態(tài),對模型進(jìn)行實(shí)時更新,從而在實(shí)時監(jiān)測過程中實(shí)現(xiàn)自學(xué)習(xí),不斷提升模型的精度和預(yù)測效果。電機(jī)狀態(tài)監(jiān)測和故障診斷技術(shù)可以了解和掌握電機(jī)使用過程中的狀態(tài),確定其整體或局部正常或異常。
工業(yè)設(shè)備的預(yù)測性維護(hù)的市場需求顯而易見,但是預(yù)防性維護(hù)想要產(chǎn)生業(yè)務(wù)、真正大規(guī)模發(fā)展卻是遇到了兩個難題。首先項(xiàng)目實(shí)施成本過高,硬件設(shè)備大多依賴進(jìn)口。比如數(shù)采傳感器、設(shè)備等。這導(dǎo)致很多企業(yè)在考慮投入產(chǎn)出比時比較猶豫。其次是技術(shù)需要突破,目前大多數(shù)供應(yīng)商只實(shí)現(xiàn)了設(shè)備狀態(tài)的監(jiān)視,真正能實(shí)現(xiàn)故障準(zhǔn)確預(yù)測的落地案例寥寥無幾。供應(yīng)商技術(shù)和能力還需要不斷升級。預(yù)防性維護(hù)要想實(shí)現(xiàn)更好的應(yīng)用,要在以下方面實(shí)現(xiàn)突破。實(shí)現(xiàn)基于預(yù)測的維護(hù),提升故障診斷及預(yù)測的準(zhǔn)確率提高軟硬件產(chǎn)品國產(chǎn)化率,降低實(shí)施成本。遠(yuǎn)程終端廣泛應(yīng)用于工業(yè)互聯(lián)網(wǎng)、分布式數(shù)據(jù)采集、設(shè)備狀態(tài)的在線監(jiān)測,能夠進(jìn)行前端數(shù)據(jù)清洗和邊緣計算,通過對歷史數(shù)據(jù)趨勢分析、設(shè)備數(shù)據(jù)機(jī)理分析、統(tǒng)計分析等大數(shù)據(jù)分析,對設(shè)備的狀態(tài)做出有效可靠的健康狀態(tài)評判,從而切實(shí)有效的提高設(shè)備的維護(hù)能力。遠(yuǎn)程終端可實(shí)現(xiàn)對電源電壓、設(shè)備狀態(tài)的自檢,分析計量故障等信息,及時發(fā)現(xiàn)計量異常?,F(xiàn)場監(jiān)測箱開門、斷電、設(shè)備運(yùn)行等異常信息也能夠主動發(fā)送報警信息到監(jiān)測中心,實(shí)現(xiàn)設(shè)備在線監(jiān)診的準(zhǔn)確性、完整性、及時性和可靠性。設(shè)備狀態(tài)的監(jiān)診很有必要。故障診斷可以根據(jù)狀態(tài)監(jiān)測系統(tǒng)提供信息來查明失調(diào)的原因或性質(zhì),判斷劣化發(fā)生部位,預(yù)測狀態(tài)發(fā)展趨勢。南京耐久監(jiān)測特點(diǎn)
電機(jī)監(jiān)測和故障預(yù)判系統(tǒng)應(yīng)用行業(yè)很多,助力實(shí)現(xiàn)工業(yè)設(shè)備數(shù)智化管理和預(yù)測性維護(hù)。無錫混合動力系統(tǒng)監(jiān)測數(shù)據(jù)
現(xiàn)代化生產(chǎn)企業(yè)為了極大限度地提高生產(chǎn)水平和經(jīng)濟(jì)效益,不斷地向規(guī)模化和高技術(shù)技術(shù)含量發(fā)展,因此生產(chǎn)裝置趨向大型化、高速高效化、自動化和連續(xù)化,人們對設(shè)備的要求不僅是性能好,效率高,還要求在運(yùn)行過程中少出故障,否則因故障停機(jī)帶來的損失是十分巨大的。國內(nèi)外化工、石化、電力、鋼鐵和航空等部門,從許多大型設(shè)備故障和事故中逐漸認(rèn)識到開展設(shè)備故障診斷的重要性。管理好用好這些大型設(shè)備,使其安全、可靠地運(yùn)行,成為設(shè)備管理中的突出任務(wù)。對于單機(jī)連續(xù)運(yùn)行的生產(chǎn)設(shè)備,停機(jī)損失巨大的大型機(jī)組和重大設(shè)備,不宜解體檢查的高精度設(shè)備以及發(fā)生故障后會引起公害的設(shè)備。傳統(tǒng)的事后和定期維修帶來的過剩維修或失修,使維修費(fèi)用在生產(chǎn)成本中所占比重很大。狀態(tài)監(jiān)測維修是在設(shè)備運(yùn)行時,對它的各個主要部位產(chǎn)生的物理、化學(xué)信號進(jìn)行狀態(tài)監(jiān)測,掌握設(shè)備的技術(shù)狀態(tài),對將要形成或已經(jīng)形成的故障進(jìn)行分析診斷,判定設(shè)備的劣化程度和部位,在故障產(chǎn)生前制訂預(yù)知性維修計劃,確定設(shè)備維修的內(nèi)容和時間。因此狀態(tài)監(jiān)測維修既能經(jīng)常保持設(shè)備的完好狀態(tài),又能充分利用零部位的使用壽命,從而延長大修間隔,減少故障停機(jī)損失。無錫混合動力系統(tǒng)監(jiān)測數(shù)據(jù)