科技之光,研發(fā)未來-特殊染色技術(shù)服務(wù)檢測中心
常規(guī)HE染色技術(shù)服務(wù)檢測中心:專業(yè)、高效-生物醫(yī)學(xué)
科研的基石與質(zhì)量的保障-動(dòng)物模型復(fù)制實(shí)驗(yàn)服務(wù)檢測中心
科技之光照亮生命奧秘-細(xì)胞熒光顯微鏡檢測服務(wù)檢測中心
揭秘微觀世界的窗口-細(xì)胞電鏡檢測服務(wù)檢測中心
科研的基石與創(chuàng)新的搖籃-細(xì)胞分子生物學(xué)實(shí)驗(yàn)服務(wù)檢測中心
科研的堅(jiān)實(shí)后盾-大小動(dòng)物學(xué)實(shí)驗(yàn)技術(shù)服務(wù)檢測中心
推動(dòng)生命科學(xué)進(jìn)步的基石-細(xì)胞生物學(xué)實(shí)驗(yàn)技術(shù)服務(wù)
科技前沿的守護(hù)者-細(xì)胞藥效學(xué)實(shí)驗(yàn)服務(wù)檢測中心
科研前沿的探索者-細(xì)胞遷移與侵襲實(shí)驗(yàn)服務(wù)檢測中心
故障診斷可以根據(jù)狀態(tài)監(jiān)測系統(tǒng)提供的信息來查明導(dǎo)致系統(tǒng)某種功能失調(diào)的原因或性質(zhì),判斷劣化發(fā)生的部位或部件,以及預(yù)測狀態(tài)劣化的發(fā)展趨勢等。電機(jī)故障診斷的基本方法主要有:1、電氣分析法,通過頻譜等信號(hào)分析方法對(duì)負(fù)載電流的波形進(jìn)行檢測從而診斷出電機(jī)設(shè)備故障的原因和程度;檢測局部放電信號(hào);對(duì)比外部施加脈沖信號(hào)的響應(yīng)和標(biāo)準(zhǔn)響應(yīng)等;2、絕緣診斷法,利用各種電氣試驗(yàn)裝置和診斷技術(shù)對(duì)電機(jī)設(shè)備的絕緣結(jié)構(gòu)和參數(shù)、工作性能是否存在缺陷做出判斷,并對(duì)絕緣壽命做出預(yù)測;3、溫度檢測方法,采用各種溫度測量方法對(duì)電機(jī)設(shè)備各個(gè)部位的溫升進(jìn)行監(jiān)測,電機(jī)的溫升與各種故障現(xiàn)象相關(guān);4、振動(dòng)與噪聲診斷法,通過對(duì)電機(jī)設(shè)備振動(dòng)與噪聲的檢測,并對(duì)獲取的信號(hào)進(jìn)行處理,診斷出電機(jī)產(chǎn)生故障的原因和部位,尤其是對(duì)機(jī)械上的損壞診斷特別有效。5、化學(xué)診斷的方法,可以檢測到絕緣材料和潤滑油劣化后的分解物以及一些軸承、密封件的磨損碎屑,通過對(duì)比其中一些化學(xué)成分的含量,可以判斷相關(guān)部位元件的破壞程度。盈蓓德科技通過自主開發(fā)的軟件和算法,對(duì)數(shù)控機(jī)床的刀具質(zhì)量進(jìn)行監(jiān)測,提前預(yù)判刀具運(yùn)行情況。南通動(dòng)力設(shè)備監(jiān)測臺(tái)
遠(yuǎn)程終端廣泛應(yīng)用于工業(yè)互聯(lián)網(wǎng)、分布式數(shù)據(jù)采集、設(shè)備狀態(tài)的在線監(jiān)測,能夠進(jìn)行前端數(shù)據(jù)清洗和邊緣計(jì)算,通過對(duì)歷史數(shù)據(jù)趨勢分析、設(shè)備數(shù)據(jù)機(jī)理分析、統(tǒng)計(jì)分析等大數(shù)據(jù)分析,對(duì)設(shè)備的狀態(tài)做出有效可靠的健康狀態(tài)評(píng)判,從而切實(shí)有效的提高設(shè)備的維護(hù)能力。遠(yuǎn)程終端可實(shí)現(xiàn)對(duì)電源電壓、設(shè)備狀態(tài)的自檢,分析計(jì)量故障等信息,及時(shí)發(fā)現(xiàn)計(jì)量異?!,F(xiàn)場監(jiān)測箱開門、斷電、設(shè)備運(yùn)行等異常信息也能夠主動(dòng)發(fā)送報(bào)警信息到監(jiān)測中心,實(shí)現(xiàn)設(shè)備在線監(jiān)診的準(zhǔn)確性、完整性、及時(shí)性和可靠性。設(shè)備狀態(tài)的監(jiān)診很有必要。嘉興電機(jī)監(jiān)測設(shè)備盈蓓德科技通過自主開發(fā)的軟件和算法,進(jìn)行數(shù)控機(jī)床的刀具質(zhì)量監(jiān)測,提前預(yù)判刀具運(yùn)行情況。
基于人工神經(jīng)網(wǎng)絡(luò)的診斷方法簡單處理單元連接而成的復(fù)雜的非線性系統(tǒng),具有學(xué)習(xí)能力,自適應(yīng)能力,非線性逼近能力等。故障診斷的任務(wù)從映射角度看就是從征兆到故障類型的映射。用ANN技術(shù)處理故障診斷問題,不僅能進(jìn)行復(fù)雜故障診斷模式的識(shí)別,還能進(jìn)行故障嚴(yán)重性評(píng)估和故障預(yù)測,由于ANN能自動(dòng)獲取診斷知識(shí),使診斷系統(tǒng)具有自適應(yīng)能力?;诩尚椭悄芟到y(tǒng)的診斷方法隨著電機(jī)設(shè)備系統(tǒng)越來越復(fù)雜,依靠單一的故障診斷技術(shù)已難滿足復(fù)雜電機(jī)設(shè)備的故障診斷要求,因此上述各種診斷技術(shù)集成起來形成的集成智能診斷系統(tǒng)成為當(dāng)前電機(jī)設(shè)備故障診斷研究的熱點(diǎn)。主要的集成技術(shù)有:基于規(guī)則的專業(yè)人員系統(tǒng)與ANN的結(jié)合,模糊邏輯與ANN的結(jié)合,混沌理論與ANN的結(jié)合,模糊神經(jīng)網(wǎng)絡(luò)與專業(yè)人員系統(tǒng)的結(jié)合。
刀具監(jiān)測主要采用人工、離線和在線檢測三種策略。人工檢測是指工人在加工過程中可以憑經(jīng)驗(yàn)檢查刀具的狀態(tài);離線檢測是在加工前專門對(duì)刀具進(jìn)行檢測,預(yù)測其壽命,看是否能勝任當(dāng)前的加工;在線檢測又稱實(shí)時(shí)檢測、監(jiān)測,是在加工過程中對(duì)刀具進(jìn)行實(shí)時(shí)檢測,并根據(jù)檢測結(jié)果做出相應(yīng)的處理。目前刀具檢測的算法有很多,有的是利用理論計(jì)算刀具上應(yīng)力的變化來判斷刀具的損傷.有的是利用時(shí)間序列分析來檢測刀具,有的是利用神經(jīng)網(wǎng)絡(luò)技術(shù)來檢測刀具。還有的是利用小波變換理論和神經(jīng)網(wǎng)絡(luò)技術(shù)來檢測刀具,但都是以理論為主??紤]到刀具的塑性損傷在數(shù)控加工中很少發(fā)生,磨損對(duì)數(shù)控加工的安全性影響很小,并且可以通過離線檢測進(jìn)行加工,通過在線檢測,可以判斷微裂紋在當(dāng)前載荷條件下是否會(huì)擴(kuò)展。如果有可能擴(kuò)大,我們認(rèn)為載荷是危險(xiǎn)的,通過減少刀具的進(jìn)給量來減少刀具上的載荷,以保證刀具的安全性。電機(jī)智能監(jiān)測和運(yùn)維,其預(yù)測效果和工程造價(jià)還未達(dá)到市場接受程度。
傳統(tǒng)方法通常無法自適應(yīng)提取特征, 同時(shí)需要一定的離線數(shù)據(jù)訓(xùn)練得到檢測模型, 但目標(biāo)對(duì)象在線場景下采集到的數(shù)據(jù)有限, 且其數(shù)據(jù)分布與訓(xùn)練數(shù)據(jù)的分布可能因隨機(jī)噪聲、變工況等原因而存在差異, 導(dǎo)致離線訓(xùn)練的模型并不完全適合于在線數(shù)據(jù), 容易降低檢測結(jié)果的準(zhǔn)確性; 其次, 上述方法通常采用基于異常點(diǎn)的檢測算法, 未充分考慮樣本前后的時(shí)序關(guān)系, 容易因數(shù)據(jù)微小波動(dòng)而產(chǎn)生誤報(bào)警, 降低檢測結(jié)果的魯棒性; 再次, 為降低誤報(bào)警, 這類方法需要反復(fù)調(diào)整報(bào)警閾值. 此外, 基于系統(tǒng)分析的故障診斷方法利用狀態(tài)空間描述建立機(jī)理模型, 可獲得理想的診斷和檢測結(jié)果, 但這類方法通常需要提前知道系統(tǒng)運(yùn)動(dòng)方程等信息, 對(duì)于軸承運(yùn)行來說, 這類信息通常不易獲知. 近年來, 深度神經(jīng)網(wǎng)絡(luò)已被成功應(yīng)用于早期故障特征的自動(dòng)提取和識(shí)別, 可自適應(yīng)地提取信息豐富和判別能力強(qiáng)的深度特征, 因此具有較好的普適性. 但是, 這類方法一方面需要大量的輔助數(shù)據(jù)進(jìn)行模型訓(xùn)練, 而歷史采集的輔助數(shù)據(jù)與目標(biāo)對(duì)象數(shù)據(jù)可能存在較大不同, 直接訓(xùn)練并不能有效提升在線檢測的特征表示效果; 另一方面, 在訓(xùn)練過程中未能針對(duì)早期故障引發(fā)的狀態(tài)變化而有目的地強(qiáng)化相應(yīng)特征表示. 因此, 深度學(xué)習(xí)方法在早期故障在線監(jiān)測中的應(yīng)用仍存在較大的提升空間.電機(jī)狀態(tài)監(jiān)測技術(shù)可幫助運(yùn)行維護(hù)人員擺脫被動(dòng)檢修和不太理想的定期檢修的困境,實(shí)現(xiàn)“預(yù)知”維修。常州變速箱監(jiān)測系統(tǒng)供應(yīng)商
時(shí)間域、頻率域和角度域的NVH分析方法,可以對(duì)汽車動(dòng)力總成的各種故障進(jìn)行實(shí)時(shí)識(shí)別、監(jiān)測和診斷。南通動(dòng)力設(shè)備監(jiān)測臺(tái)
動(dòng)力裝備全壽命周期監(jiān)測診斷方面:實(shí)現(xiàn)了支持物聯(lián)網(wǎng)的智能信息采集與管理、全生命周期動(dòng)態(tài)自適應(yīng)監(jiān)測、早期非線性故障特征提取。優(yōu)化重構(gòu)出綜合體現(xiàn)裝備運(yùn)行工況及表現(xiàn)的新參數(shù),提高異常狀態(tài)辨識(shí)的適應(yīng)性與可靠性,基于運(yùn)行過程信息反映裝備劣化趨勢與故障發(fā)展規(guī)律,來提高故障早期辨識(shí)能力。動(dòng)力裝備全生命周期性能優(yōu)化服務(wù)方面:提供了轉(zhuǎn)子全息動(dòng)平衡快速響應(yīng)與服務(wù)支持、以全息譜的失衡故障確診、動(dòng)力裝備轉(zhuǎn)子和軸系平衡配重方案優(yōu)化。基于物聯(lián)網(wǎng)和網(wǎng)絡(luò)化監(jiān)測診斷將產(chǎn)品監(jiān)測診斷與運(yùn)行服務(wù)支持有機(jī)集成一體,在應(yīng)用中實(shí)現(xiàn)動(dòng)力裝備常見故障診斷準(zhǔn)確率達(dá)80%以上??蓱?yīng)用于風(fēng)力大電機(jī)、空壓機(jī)、氮壓機(jī)等大型動(dòng)力裝備的集群化診斷領(lǐng)域。提供了基于物聯(lián)網(wǎng)的動(dòng)力裝備全生命周期監(jiān)測與服務(wù)支持創(chuàng)新模式,提供了其生命周期的遠(yuǎn)程監(jiān)測診斷與維護(hù)等專業(yè)化服務(wù)。南通動(dòng)力設(shè)備監(jiān)測臺(tái)