設(shè)備故障診斷首先要獲取設(shè)備運(yùn)行中各種狀態(tài)信息,如:振動(dòng)、聲音、變形、位移、應(yīng)力、裂紋、磨損、溫度、壓力、流量、電流、轉(zhuǎn)速、轉(zhuǎn)矩、功率等各種參數(shù)。振動(dòng)信號(hào)在線(xiàn)監(jiān)測(cè)診斷技術(shù)是設(shè)備狀態(tài)監(jiān)測(cè)與故障診斷的重要手段。機(jī)械振動(dòng)引起的設(shè)備損壞率很高,振動(dòng)大即是設(shè)備有故障的表現(xiàn)。對(duì)于設(shè)備的振動(dòng)信號(hào)測(cè)試和分析,可獲得機(jī)體、轉(zhuǎn)子或其他零部件的振動(dòng)幅值、頻率和相位三個(gè)基本要素,經(jīng)過(guò)對(duì)信號(hào)的分析處理和識(shí)別,可能了解到機(jī)器的振動(dòng)特點(diǎn)、結(jié)構(gòu)強(qiáng)弱、振動(dòng)來(lái)源,故障部位和故障原因,為診斷決策提供依據(jù),因此,利用振動(dòng)信號(hào)診斷故障的技術(shù)應(yīng)用**為普遍。振動(dòng)信號(hào)中含有豐富的機(jī)械狀態(tài)信息量,可反映設(shè)備設(shè)計(jì)是否合理、零部件是否存在缺陷、材質(zhì)好壞、制造和安裝質(zhì)量是否符合要求、運(yùn)行操作是否正常等諸多原因產(chǎn)生的故障。把振動(dòng)信號(hào)轉(zhuǎn)變?yōu)殡娦盘?hào)后,通過(guò)采集設(shè)備數(shù)字化處理進(jìn)入計(jì)算機(jī),進(jìn)行數(shù)據(jù)處理和分析,得到能反映故障狀態(tài)的特征信息譜圖,為進(jìn)一步識(shí)別故障提供依據(jù)。盈蓓德科技通過(guò)在機(jī)測(cè)量和檢測(cè),進(jìn)行數(shù)控機(jī)床的刀具質(zhì)量監(jiān)測(cè)。智能監(jiān)測(cè)價(jià)格
基于數(shù)據(jù)的故障檢測(cè)與診斷方法能夠?qū)A康墓I(yè)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析和特征提取,將系統(tǒng)的狀態(tài)分為正常運(yùn)行狀態(tài)和故障狀態(tài),可視為模式識(shí)別任務(wù)。故障檢測(cè)是判斷系統(tǒng)是否處于預(yù)期的正常運(yùn)行狀態(tài),判斷系統(tǒng)是否發(fā)生異常故障,相當(dāng)于一個(gè)二分類(lèi)任務(wù)。故障診斷是在確定發(fā)生故障的時(shí)候判斷系統(tǒng)處于哪一種故障狀態(tài),相當(dāng)于一個(gè)多分類(lèi)任務(wù)。因此,故障檢測(cè)和診斷技術(shù)的研究類(lèi)似于模式識(shí)別,分為4個(gè)的步驟:數(shù)據(jù)獲取、特征提取、特征選擇和特征分類(lèi)。1)數(shù)據(jù)獲取步驟是從過(guò)程系統(tǒng)收集可能影響過(guò)程狀態(tài)的信號(hào),包括溫度、流量等過(guò)程變量;2)特征提取步驟是將采集的原始信號(hào)映射為有辨識(shí)度的系統(tǒng)狀態(tài)信息;3)特征選擇步驟是將與狀態(tài)變化相關(guān)的變量提取出來(lái);4)特征分類(lèi)步驟是通過(guò)算法將前幾步中選擇的特征進(jìn)行故障檢測(cè)與診斷。在大數(shù)據(jù)這一背景下,傳統(tǒng)的基于數(shù)據(jù)的故障檢測(cè)與診斷方法被廣泛應(yīng)用,但是,這些方法有一些共同的缺點(diǎn):特征提取需要大量的**知識(shí)和信號(hào)處理技術(shù),并且對(duì)于不同的任務(wù),沒(méi)有統(tǒng)一的程序來(lái)完成。此外,常規(guī)的基于機(jī)器學(xué)習(xí)的方法結(jié)構(gòu)較淺,在提取信號(hào)的高維非線(xiàn)性關(guān)系方面能力有限。南京減振監(jiān)測(cè)介紹盈蓓德科技開(kāi)發(fā)的監(jiān)測(cè)系統(tǒng)可以實(shí)現(xiàn)電機(jī)振動(dòng)、沖擊、加速度、運(yùn)動(dòng)監(jiān)測(cè)、控制及測(cè)試應(yīng)用的精確測(cè)量。
隨著物聯(lián)網(wǎng)技術(shù)的發(fā)展,各類(lèi)傳感器應(yīng)運(yùn)而生,通過(guò)給設(shè)備安裝傳感器、采集器等裝置,結(jié)合軟件采集,可以高效地實(shí)現(xiàn)設(shè)備狀態(tài)的自動(dòng)采集,精細(xì)反應(yīng)設(shè)備真實(shí)運(yùn)行情況?,F(xiàn)代設(shè)備大型化、高速化和自動(dòng)化程度越來(lái)越高,為進(jìn)一步了解設(shè)備運(yùn)行的細(xì)節(jié),只監(jiān)測(cè)設(shè)備狀態(tài)就遠(yuǎn)遠(yuǎn)不夠,還需要監(jiān)測(cè)更多的設(shè)備運(yùn)行參數(shù)。例如數(shù)控機(jī)床運(yùn)行時(shí)的主軸負(fù)載、主軸轉(zhuǎn)速、進(jìn)給倍率等,乃至主軸振動(dòng)、溫度等參數(shù),以及報(bào)警信息等,如此才能***了解機(jī)床加工的細(xì)節(jié)情況,對(duì)于加工質(zhì)量的保障、設(shè)備維保等都具有重要的價(jià)值。數(shù)控機(jī)床一般通過(guò)數(shù)控系統(tǒng)進(jìn)行控制,各類(lèi)數(shù)控系統(tǒng)具有完善的通訊協(xié)議,通過(guò)軟件對(duì)接通訊協(xié)議,可以實(shí)現(xiàn)上述更多參數(shù)采集。
故障預(yù)測(cè)與健康管理是以工業(yè)監(jiān)測(cè)數(shù)據(jù)為基礎(chǔ),通過(guò)高等數(shù)學(xué)、數(shù)學(xué)優(yōu)化、統(tǒng)計(jì)概率、信號(hào)處理、機(jī)器學(xué)習(xí)和統(tǒng)計(jì)學(xué)習(xí)等技術(shù)搭建模型算法,**終實(shí)現(xiàn)產(chǎn)品和裝備的狀態(tài)監(jiān)測(cè)、故障診斷及壽命預(yù)測(cè),為產(chǎn)品和裝備的正常運(yùn)行保駕護(hù)航,從而提高其安全性和可靠性。故障預(yù)測(cè)與健康管理是以工業(yè)監(jiān)測(cè)數(shù)據(jù)為基礎(chǔ),通過(guò)高等數(shù)學(xué)、數(shù)學(xué)優(yōu)化、統(tǒng)計(jì)概率、信號(hào)處理、機(jī)器學(xué)習(xí)和統(tǒng)計(jì)學(xué)習(xí)等技術(shù)搭建模型算法,**終實(shí)現(xiàn)產(chǎn)品和裝備的狀態(tài)監(jiān)測(cè)、故障診斷及壽命預(yù)測(cè),為產(chǎn)品和裝備的正常運(yùn)行保駕護(hù)航,從而提高其安全性和可靠性。近年來(lái)我們提出的標(biāo)準(zhǔn)化平方包絡(luò)和數(shù)學(xué)框架以及準(zhǔn)算數(shù)均值比數(shù)學(xué)框架指引了稀疏測(cè)度構(gòu)造的新方向,同時(shí)發(fā)現(xiàn)了大量與基尼指數(shù)、峭度、香農(nóng)熵等具有等價(jià)性能的稀疏測(cè)度?;跇?biāo)準(zhǔn)化平方包絡(luò)和數(shù)學(xué)框架以及凸優(yōu)化技術(shù),提出了在線(xiàn)更新模型權(quán)重可解釋的機(jī)器學(xué)習(xí)算法,**終可以利用模型權(quán)重來(lái)實(shí)時(shí)確認(rèn)故障特征頻率,解決了狀態(tài)監(jiān)測(cè)與故障診斷領(lǐng)域傳統(tǒng)機(jī)器學(xué)習(xí)只能輸出狀態(tài),而無(wú)法提供故障特征來(lái)確認(rèn)輸出狀態(tài)的難題。電機(jī)監(jiān)測(cè)系統(tǒng)選擇傳感器采集旋轉(zhuǎn)設(shè)備的溫度、振動(dòng)數(shù)據(jù),分析變化趨勢(shì)以判斷設(shè)備情況。
預(yù)測(cè)性維護(hù)應(yīng)運(yùn)而生。其是以狀態(tài)為依據(jù)的維修,主要是對(duì)設(shè)備在運(yùn)行中產(chǎn)生的二次效應(yīng)(如振動(dòng)、噪聲、沖擊脈沖、油樣成分、溫度等)進(jìn)行連續(xù)在線(xiàn)的狀態(tài)監(jiān)測(cè)及數(shù)據(jù)分析,診斷并預(yù)測(cè)設(shè)備故障的發(fā)展趨勢(shì),提前制定預(yù)測(cè)性維護(hù)計(jì)劃并實(shí)施檢維修的行為??傮w來(lái)看,狀態(tài)監(jiān)測(cè)和故障診斷是判斷預(yù)測(cè)性維護(hù)是否合理的根本所在,數(shù)據(jù)狀態(tài)的連續(xù)監(jiān)測(cè)和遠(yuǎn)程傳輸上傳相對(duì)已經(jīng)比較成熟,而狀態(tài)預(yù)測(cè)和故障診斷主要還是依靠人工分析實(shí)現(xiàn),診斷分析人員通過(guò)趨勢(shì)?波形?頻譜等專(zhuān)業(yè)分析工具,結(jié)合傳動(dòng)結(jié)構(gòu)?機(jī)械部件參數(shù)等信息,實(shí)現(xiàn)設(shè)備故障的精細(xì)定位。其發(fā)展趨勢(shì)是將物聯(lián)網(wǎng)及人工智能技術(shù)引入狀態(tài)預(yù)測(cè)及故障的智能診斷,從而降低誤判概率,大幅提升診斷效率和準(zhǔn)確性。電機(jī)健康管理是基于各類(lèi)數(shù)據(jù)監(jiān)測(cè)和故障預(yù)測(cè)對(duì)設(shè)備完好性、可用性的評(píng)估和控制。杭州設(shè)備監(jiān)測(cè)系統(tǒng)
振動(dòng)檢測(cè)儀應(yīng)用于設(shè)備狀態(tài)監(jiān)測(cè),在設(shè)備預(yù)知維修中起到了重要的作用。智能監(jiān)測(cè)價(jià)格
刀具監(jiān)測(cè)管理系統(tǒng)是我們基于精密加工行業(yè)特征,結(jié)合加工中心、車(chē)床等機(jī)械加工過(guò)程,打造的一款刀具狀態(tài)監(jiān)測(cè)和壽命預(yù)測(cè)分析系統(tǒng),通過(guò)采集主軸電流(負(fù)載)信號(hào)、位置信號(hào)、速度信號(hào)等30維度+數(shù)據(jù)信號(hào),結(jié)合大數(shù)據(jù)流式處理、自然語(yǔ)言處理等自學(xué)習(xí)處理算法和行業(yè)多年經(jīng)驗(yàn)數(shù)據(jù)沉淀,構(gòu)建的一套完整的刀具壽命預(yù)測(cè)和狀態(tài)監(jiān)控管理系統(tǒng),能夠?qū)崿F(xiàn)100%斷刀和崩刃監(jiān)控,磨損監(jiān)控識(shí)別率達(dá)到99%以上,同時(shí),提供基于刀具狀態(tài)監(jiān)測(cè)和壽命預(yù)測(cè)的異常停機(jī)控制模塊,避免因刀具異常導(dǎo)致的產(chǎn)品質(zhì)量損失和異常撞機(jī)事故,幫助用戶(hù)節(jié)約刀具成本30%以上,100%避免刀具異常帶來(lái)的產(chǎn)品質(zhì)量損失,為用戶(hù)提供無(wú)憂(yōu)機(jī)加工過(guò)程管理!智能監(jiān)測(cè)價(jià)格
上海盈蓓德智能科技有限公司總部位于上海市閔行區(qū)新龍路1333號(hào)28幢328室,是一家從事智能科技、電子科技、計(jì)算機(jī)科技領(lǐng)域內(nèi)的技術(shù)開(kāi)發(fā)、技術(shù)服務(wù)、技術(shù)咨詢(xún)、技術(shù)轉(zhuǎn)讓?zhuān)?jì)算機(jī)網(wǎng)絡(luò)工程,計(jì)算機(jī)硬件開(kāi)發(fā),電子產(chǎn)品、計(jì)算機(jī)軟硬件、辦公設(shè)備、機(jī)械設(shè)備(除特種設(shè)備)銷(xiāo)售。【依法須經(jīng)批準(zhǔn)的項(xiàng)目,經(jīng)相關(guān)部門(mén)批準(zhǔn)后方可開(kāi)展經(jīng)營(yíng)活動(dòng)】的公司。盈蓓德科技擁有一支經(jīng)驗(yàn)豐富、技術(shù)創(chuàng)新的專(zhuān)業(yè)研發(fā)團(tuán)隊(duì),以高度的專(zhuān)注和執(zhí)著為客戶(hù)提供智能在線(xiàn)監(jiān)診系統(tǒng),西門(mén)子Anovis,聲音與振動(dòng)分析,主動(dòng)減振降噪系統(tǒng)。盈蓓德科技不斷開(kāi)拓創(chuàng)新,追求出色,以技術(shù)為先導(dǎo),以產(chǎn)品為平臺(tái),以應(yīng)用為重點(diǎn),以服務(wù)為保證,不斷為客戶(hù)創(chuàng)造更高價(jià)值,提供更優(yōu)服務(wù)。盈蓓德科技始終關(guān)注電工電氣行業(yè)。滿(mǎn)足市場(chǎng)需求,提高產(chǎn)品價(jià)值,是我們前行的力量。