YOLO算法的關(guān)鍵技術(shù)在YOLO算法中,有幾個(gè)關(guān)鍵技術(shù)對(duì)其性能起著重要作用。首先是使用卷積神經(jīng)網(wǎng)絡(luò)提取圖像特征,其中引入了一些先進(jìn)的網(wǎng)絡(luò)結(jié)構(gòu),如Darknet。其次是使用AnchorBox來提高目標(biāo)定位的精度。此外,YOLO算法還引入了特征金字塔網(wǎng)絡(luò)和多尺度預(yù)測等技術(shù),以處理不同大小的目標(biāo)。YOLO算法在實(shí)時(shí)目標(biāo)檢測和跟蹤中的應(yīng)用YOLO算法在實(shí)時(shí)目標(biāo)檢測和跟蹤領(lǐng)域取得了明顯的成果。它不僅在檢測速度上遠(yuǎn)超傳統(tǒng)方法,而且在目標(biāo)定位和類別預(yù)測準(zhǔn)確性上也表現(xiàn)出色。因此,YOLO算法在許多應(yīng)用中得到了廣泛應(yīng)用,如視頻監(jiān)控、自動(dòng)駕駛和物體識(shí)別等。RK3399處理板如何實(shí)現(xiàn)目標(biāo)的識(shí)別及跟蹤?青??孔V的目標(biāo)跟蹤
如今,無人機(jī)在我們生活中的應(yīng)用越來越廣。例如無人機(jī)巡檢安防領(lǐng)域,無人機(jī)能夠到達(dá)人無法觸及的一些角度,能夠很大程度上擴(kuò)大安防檢查的覆蓋面。在工地、電力、化工等行業(yè),晚上巡檢是必不可少的環(huán)節(jié),并且晚上巡檢還能發(fā)現(xiàn)白天無法看到的一些問題,在白天,一般的相機(jī)效果很好,能夠看到非常清晰的監(jiān)控畫面,但是到了晚上,就心有余而力不足。這是因?yàn)橐郧按蠖鄶?shù)相機(jī)都是可見光相機(jī),在晚上光源不佳時(shí),就會(huì)出現(xiàn)成像模糊、漆黑。這種解決辦法是采用紅外熱像儀傳感器,即使在漆黑的夜晚,通過紅外成像也能展現(xiàn)出清晰的畫面。高效目標(biāo)跟蹤聯(lián)系方式如何實(shí)現(xiàn)穩(wěn)定的目標(biāo)跟蹤?
通常,遮擋可以分為三種情況:目標(biāo)間遮擋、背景遮擋、自遮擋。對(duì)于目標(biāo)之間的相互遮擋,可以選擇根據(jù)目標(biāo)的位置和目標(biāo)特征的先驗(yàn)知識(shí)來處理這一問題。而對(duì)于場景結(jié)構(gòu)的導(dǎo)致的部分遮擋此方法則難以判斷,因?yàn)殡y以辨認(rèn)究竟是目標(biāo)形狀發(fā)生變化還是發(fā)生遮擋。所以,處理遮擋問題的通用方法是用線性或非線性動(dòng)態(tài)建模方法對(duì)運(yùn)動(dòng)目標(biāo)進(jìn)行,并在目標(biāo)發(fā)生遮擋時(shí),預(yù)測目標(biāo)的可能位置,一直到目標(biāo)重新出現(xiàn)時(shí)再修正它的位置??梢杂每柭鼮V波器來實(shí)現(xiàn)估計(jì)目標(biāo)的位置,也可以用粒子濾波對(duì)目標(biāo)做狀態(tài)估計(jì)。
由于侵入的目標(biāo)的形狀和顏色等特征是難以固定的,再加上監(jiān)控的場景,即背景往往比較復(fù)雜,只利用一個(gè)單幀圖像就找出移動(dòng)的目標(biāo)是非常困難的。然而,目標(biāo)的運(yùn)動(dòng)導(dǎo)致了其運(yùn)動(dòng)時(shí)間內(nèi),監(jiān)控場景圖像的連續(xù)變化,所以,使用圖像序列分析往往是比較有效的,而且適合于低信噪比的情況。由于監(jiān)控系統(tǒng)通常監(jiān)控的視野比較大,系統(tǒng)設(shè)置的環(huán)境較為惡劣,圖像傳輸?shù)木嚯x較遠(yuǎn),從而導(dǎo)致圖像的信噪比不高,因此采用突出目標(biāo)的方法,需要在配準(zhǔn)的前提下進(jìn)行多幀能量積累和噪聲抑制。在該技術(shù)中,要研究的問題有,相鄰的兩幅或多幅圖像之間的關(guān)系是什么關(guān)系,是簡單的圖像差的值,還是多幅之間差的最大值,還是其他的與圖像減法之間的其他函數(shù)關(guān)系,是尤其需要研究的。在研究中,研究如何差,如何自動(dòng)得到差圖像的分割門限,如何減小背景和突出目標(biāo)是研究的方向。用于安防監(jiān)控及狀態(tài)監(jiān)測的攝像頭數(shù)量的飛速發(fā)展。
從軟件的角度來看,整個(gè)視頻跟蹤系統(tǒng)主要是由電視攝像機(jī)及控制、圖像獲取模塊、圖像顯示模塊、數(shù)據(jù)庫,運(yùn)動(dòng)檢測,目標(biāo)跟蹤,報(bào)警輸入和人機(jī)接口模塊等組成的。視覺計(jì)算模塊是視頻跟蹤系統(tǒng)的重點(diǎn),是實(shí)現(xiàn)目標(biāo)檢測和跟蹤的關(guān)鍵,如圖3所示。一般采取先檢測后跟蹤(Detect-before-Track)方式,目標(biāo)的檢測和跟蹤是緊密結(jié)合的。檢測是跟蹤的前因,并為跟蹤提供了目標(biāo)的信息(如目標(biāo)的位置,大小,模式和速度估計(jì)等),而跟蹤則是檢測的延續(xù),實(shí)時(shí)利用檢測得到的知識(shí)去驗(yàn)證目標(biāo)的存在。智能目標(biāo)識(shí)別及追蹤,讓目標(biāo)無處可藏。放心目標(biāo)跟蹤要多少錢
慧視AI算法是無人設(shè)備的“眼睛”。青??孔V的目標(biāo)跟蹤
近年來,我國多地智慧城市建設(shè)取得較好的成效,諸多創(chuàng)新技術(shù)和解決方案得到廣泛應(yīng)用。而在智慧停車方面,許多公共場所也開始逐步落地應(yīng)用。一車一桿的系統(tǒng),智能識(shí)別進(jìn)出入車輛,控制車輛進(jìn)出入,統(tǒng)計(jì)車位空缺數(shù),在很大程度上能夠優(yōu)化公共停車場的交通擁堵等問題,能夠提高安全和通行效率。智慧停車閘道裝有車牌識(shí)別的機(jī)箱,該機(jī)箱集攝像頭、圖像處理板、顯示屏、內(nèi)存卡等設(shè)備于一體,其中圖像處理板內(nèi)置車牌識(shí)別算法,在攝像頭獲取車牌照片后,板卡算法就能進(jìn)行快速又高精度的信息識(shí)別,并上傳數(shù)據(jù)到后端控制中心,能夠有效控制車輛的合理出入,方面管理者優(yōu)化管理。青海靠譜的目標(biāo)跟蹤