因斯蔻浦(上海)生物科技有限公司 雙光子顯微鏡的基本原理是:在高光子密度的情況下,熒光分子可以同時吸收 2 個長波長的光子,在經(jīng)過一個很短的所謂激發(fā)態(tài)壽命的時間后,發(fā)射出一個波長較短的光子;其效果和使用一個波長為長波長一半的光子去激發(fā)熒光分子是相同的。雙光子激發(fā)需要很高的光子密度,為了不損傷細胞,雙光子顯微鏡使用高能量鎖模脈沖激光器。這種激光器發(fā)出的激光具有很高的峰值能量和很低的平均能量,其脈沖寬度只有 100 飛秒,而其周期可以達到 80至100兆赫茲。在使用高數(shù)值孔徑的物鏡將脈沖激光的光子聚焦時,物鏡的焦點處的光子密度是比較高的,雙光子激發(fā)只發(fā)生在物鏡的焦點上,所以雙光子顯微鏡不需要共聚焦***,提高了熒光檢測效率。多光子顯微鏡在臨床前評價IA形態(tài)、細胞外基質(zhì)、細胞密度和血管形成等方面顯示出強大的作用。嚙齒類多光子顯微鏡成像分辨率
比較兩表格中的相關(guān)參數(shù)可以看出,基于分子光學標記的成像技術(shù)已經(jīng)在生物活檢和基因表達規(guī)律方面展示了較大的優(yōu)勢。例如,正電子發(fā)射斷層成像(PET)可實現(xiàn)對分子代謝的成像,空間分辨率∶1-2mm,時間分辨率;分鐘量級。與PET比較,光學成像的應(yīng)用場合更廣(可測量更多的參數(shù),請參見表1-1),且具有更高的時間分辨率(秒級),空間分辨率可達到微米。因此,二者相比,雖然光學成像在測量深度方面不及PET,但在測量參數(shù)種類與時空分辨率方面有一定優(yōu)勢。對于小動物(如小白鼠)研究來說,光學成像技術(shù)可以實現(xiàn)小動物整體成像和在體基因表達成像。例如,初步研究表明,熒光介導層析成像可達到近10cm的測量深度;基于多光子激發(fā)的顯微成像技術(shù)可望實現(xiàn)小鼠體內(nèi)基因表達的實時在體成像。美國清醒動物多光子顯微鏡數(shù)據(jù)采集多光子顯微鏡使用高能量鎖模脈沖激光器。
隨著生物分子光學標記技術(shù)的不斷進步,光學技術(shù)在揭示生命活動基本規(guī)律的研究中正發(fā)揮越來越重要的作用,也為醫(yī)學診療提供了更多、更有效的手段。生物醫(yī)學光學(BiomedicalOptics)是近年來受到國際光學界和生物醫(yī)學界關(guān)注的研究熱點,在生物活檢、光動力、細胞結(jié)構(gòu)與功能檢測、基因表達規(guī)律的在體研究等問題上取得了一系列研究成果,目前正在從宏觀到微觀上對大腦活動與功能進行多層面的研究。細胞重大生命活動(包括細胞增殖、分化、凋亡及信號轉(zhuǎn)導)的發(fā)生和調(diào)節(jié)是通過生物大分子間(如蛋白質(zhì)-蛋白質(zhì)、蛋白質(zhì)-核酸等)相互作用來實現(xiàn)的。蛋白質(zhì)作為基因調(diào)控的產(chǎn)物,與細胞和機體生理過程代謝直接相關(guān),深入研究基因表達及蛋白質(zhì)-蛋白質(zhì)相互作用不僅能揭示生命活動的基本規(guī)律,同時也能深入了解疾病發(fā)生的分子機理,進而為尋找更有效的藥物分子、提高藥物篩選和藥物設(shè)計的效率提供新的方法和思路。
以往我們認識的光電效應(yīng)是單光子光電效應(yīng),即一個電子在極短時間內(nèi)能吸收到一個光子而從金屬表面逸出。強激光的出現(xiàn)豐富了人們對于光電效應(yīng)的認識,用強激光照射金屬,由于其光子密度極大,一個電子在短時間吸收多個光子成為可能,從而形成多光子電效應(yīng),這已被實驗證實。為什么一般討論的光電效應(yīng)都是指單光子光電效應(yīng)呢?這是因為,在使用普通光源的情況下,電子吸收兩個以上光子能量的概率是非常非常小的,幾乎為零。事實上,愛因斯坦本人就考慮過在強光下發(fā)生光電效應(yīng)的可能性問題。對此,他有如下的論述:光電效應(yīng)中的一個電子吸收兩個光子的幾率不會大于下雨天兩個雨滴同事打在一個螞蟻上的幾率。因此,多光子光電效應(yīng)在實驗上的研究成為可能,是二十世紀六十年代激光乃至強激光出現(xiàn)以后的事情。有了激光,對于雙光子光電效應(yīng),在實驗上和理論上均取得了許多成果。利用強激光,人們不僅觀察到雙光子和三光子的光電效應(yīng),甚至觀察到金靶材吸收幾十個等效光子實驗現(xiàn)象。1990年A.Mayer在Science上刊文展示了雙光子激光掃描熒光顯微鏡。
我們要指出的是,單光子激發(fā)熒光和雙光子激發(fā)熒光,是從熒光產(chǎn)生的機理上來區(qū)分的。而共焦則是熒光顯微鏡的一種結(jié)構(gòu),其目的是為了,通過共焦結(jié)構(gòu),提高整個熒光顯微鏡的空間分辨率。所以共焦熒光顯微鏡可以根據(jù)激發(fā)光源的不同,實現(xiàn)單光子共焦熒光成像或者雙光子共焦熒光成像。往往一個普通的雙光子熒光顯微鏡(沒有共焦結(jié)構(gòu))其空間分辨率也可以達到單光子共焦熒光顯微鏡的水平。這樣就可以簡化整個系統(tǒng),相對來說,就提高了激發(fā)光源的利用率,以及熒光的探測效率,這個也是我們提倡雙光子熒光成像的原因之一。雙光子熒光共焦顯微鏡由于雙光子效應(yīng)和共焦結(jié)構(gòu),分辨率則會更高,而我們通常說的共焦顯微鏡都是指單光子激發(fā)熒光的。多光子顯微鏡可以更好的了解神經(jīng)信號之間復(fù)雜動態(tài)的編碼過程。Ultima 2P Plus多光子顯微鏡數(shù)據(jù)處理
多光子顯微鏡的發(fā)展歷史充滿了貢獻、開發(fā)、進步和數(shù)個世紀以來多個來源和地點的改進。嚙齒類多光子顯微鏡成像分辨率
對兩個遠距離(相距大于1-2 mm)的成像部位,通常使用兩條單獨的路徑進行成像;對于相鄰區(qū)域,通常使用單個物鏡的多光束進行成像。多光束掃描技術(shù)必須特別注意激發(fā)光束之間的串擾問題,這個問題可以通過事后光源分離方法或時空復(fù)用方法來解決。事后光源分離方法指的是用算法來分離光束消除串擾;時空復(fù)用方法指的是同時使用多個激發(fā)光束,每個光束的脈沖在時間上延遲,這樣就可以暫時分離被不同光束激發(fā)的單個熒光信號。引入越多路光束就可以對越多的神經(jīng)元進行成像,但是多路光束會導致熒光衰減時間的重疊增加,從而限制了區(qū)分信號源的能力;并且多路復(fù)用對電子設(shè)備的工作速率有很高的要求;大量的光束也需要更高的激光功率來維持近似單光束的信噪比,這會容易導致組織損傷。嚙齒類多光子顯微鏡成像分辨率