亚洲日韩国产二区无码,亚洲av永久午夜在线观看红杏,日日摸夜夜添夜夜添无码免费视频,99精品国产丝袜在线拍国语

德國高通量全自動膜片鉗產(chǎn)品介紹

來源: 發(fā)布時間:2021-09-11

高阻封接問題的解決不僅改善了電流記錄性能,還隨之出現(xiàn)了研究通道電流的多種膜片鉗方式。根據(jù)不同的研究目的,可制成不同的膜片構(gòu)型。(1)細胞吸附膜片(cell-attachedpatch)將兩次拉制后經(jīng)加熱拋光的微管電極置于清潔的細胞膜表面上,形成高阻封接,在細胞膜表面隔離出一小片膜,既而通過微管電極對膜片進行電壓鉗制,分辨測量膜電流,稱為細胞貼附膜片。由于不破壞細胞的完整性,這種方式又稱為細胞膜上的膜片記錄。此時跨膜電位由玻管固定電位和細胞電位決定。因此,為測定膜片兩側(cè)的電位,需測定細胞膜電位并從該電位減去玻管電位。從膜片的通道活動看,這種形式的膜片是極穩(wěn)定的,因細胞骨架及有關(guān)代謝過程是完整的,所受的干擾小。維持細胞正常形態(tài)和功能完整性。德國高通量全自動膜片鉗產(chǎn)品介紹

德國高通量全自動膜片鉗產(chǎn)品介紹,膜片鉗

把膜電位鉗位電壓調(diào)到-80--100mV,再用鉗位放大器的控制鍵把全細胞瞬態(tài)充電電流調(diào)定至零位(EPC-10的控制鍵稱為C-slow和C-series;Axopatch200標(biāo)為全細胞電容和系列電阻)。寫下細胞的電容值Cc和未補整的系列電阻值Rs,用于消除全細胞瞬態(tài)電流,計算鉗位的固定時間(即RsCc),然啟根據(jù)歐姆定律從測定脈沖電流的振幅算出細胞的電阻RC。緩慢調(diào)節(jié)Rs旋鈕注意測定脈沖反應(yīng)的變化,逐漸增加補整的比例。如果RS補整非常接近振蕩的閾值,RS或Cc的微細變化都會達到震蕩的閾值,產(chǎn)生電壓的振蕩而使細胞受損。因此應(yīng)當(dāng)在RS補整水平寫不穩(wěn)定閾值之間留有10%-20%的余地為安全。準(zhǔn)備資料收集和脈沖序列的測定。美國多通道膜片鉗廠家膜電導(dǎo)測定的依據(jù)是電學(xué)中的歐姆定律。

德國高通量全自動膜片鉗產(chǎn)品介紹,膜片鉗

細胞是動物和人體的基本單元,細胞與細胞內(nèi)的通信是依靠其膜上的離子通道進行的,離子和離子通道是細胞興奮的基礎(chǔ),亦即產(chǎn)生生物電信號的基礎(chǔ),生物電信號通常用電學(xué)或電子學(xué)方法進行測量。由此形成了一門細胞學(xué)科--電生理學(xué)。膜片鉗技術(shù)已成為研究離子通道的黃金標(biāo)準(zhǔn)。電壓門控性離子通道:膜上通道蛋白的帶點集團在膜電位改變時,在電場的作用下,重新分布導(dǎo)致通道的關(guān)閉,同時有電荷移動,稱為門控電流。配體門控離子通道:神經(jīng)遞質(zhì)(如乙酰膽堿)、ji素等與通道蛋白上的特定位點結(jié)合,引起蛋白構(gòu)像的改變,導(dǎo)致通道的打開。

光遺傳學(xué)調(diào)控技術(shù)是近幾年正在迅速發(fā)展的一項整合了光學(xué)、基因操作技術(shù)、電生理等多學(xué)科交叉的生物技術(shù)。NatureMethods雜志將此技術(shù)評為"Methodoftheyear2010"[19];美國麻省理工學(xué)院科技評述(MITTechnologyReview,2010)在其總結(jié)性文章"Theyearinbiomedicine"中指出:光遺傳學(xué)調(diào)控技術(shù)現(xiàn)已經(jīng)迅速成為生命科學(xué),特別是神經(jīng)和心臟研究領(lǐng)域中熱門的研究方向之一。目前這一技術(shù)正在被全球幾百家從事心臟學(xué)、神經(jīng)科學(xué)和神經(jīng)工程研究的實驗室使用,幫助科學(xué)家們深入理解大腦的功能,進而為深刻認識神經(jīng)、精神疾病、心血管疾病的發(fā)病機理并研發(fā)針對疾病干預(yù)和的新技術(shù)。離子通道的近代觀念源于Hodgkin、Huxley、Katz等人在20世紀(jì)30—50年代的開創(chuàng)性研究。

德國高通量全自動膜片鉗產(chǎn)品介紹,膜片鉗

1976年德國馬普生物物理化學(xué)研究所Neher和Sakmann在青蛙肌細胞上用雙電極鉗制膜電位的同時,記錄到ACh的單通道離子電流,從而產(chǎn)生了膜片鉗技術(shù)。1980年Sigworth等在記錄電極內(nèi)施加5-50cmH2O的負壓吸引,得到10-100GΩ的高阻封接(Giga-seal),明顯降低了記錄時的噪聲實現(xiàn)了單根電極既鉗制膜片電位又記錄單通道電流的突破。1981年Hamill和Neher等對該技術(shù)進行了改進,引進了膜片游離技術(shù)和全細胞記錄技術(shù),從而使該技術(shù)更趨完善,具有1pA的電流靈敏度、1μm的空間分辨率和10μs的時間分辨率。1983年10月,《Single-ChannelRecording》一書問世,奠定了膜片鉗技術(shù)的里程碑。Sakmann和Neher也因其杰出的工作和突出貢獻,榮獲1991年諾貝爾醫(yī)學(xué)和生理學(xué)獎。膜片鉗80%的工夫在于刺備細胞。日本全細胞膜片鉗

全自動膜片鉗技術(shù)的出現(xiàn)標(biāo)志著膜片鉗技術(shù)已經(jīng)發(fā)展到了一個嶄新階段。德國高通量全自動膜片鉗產(chǎn)品介紹

電壓鉗技術(shù),是20世紀(jì)初由Cole發(fā)明,Hodgkin和Huxley完善,其設(shè)計的主要目的是為了證明動作電位的產(chǎn)生機制,即動作電位的峰電位是由于膜對鈉的通透性發(fā)生了一過性的增大過程。但當(dāng)時沒有直接測定膜通透性的方法,于是就用膜對某種離子的電導(dǎo)來**該種離子的通透性,膜電導(dǎo)測定的依據(jù)是電學(xué)中的歐姆定律,如膜的Na電導(dǎo)GNa與電化學(xué)驅(qū)動力(Em-ENa)和膜電流INa的關(guān)系GNa=INa/(Em-ENa).因此可通過測量膜電流,再利用歐姆定律來計算膜電導(dǎo),但是,利用膜電流來計算膜電導(dǎo)時,記錄膜電流期間的膜電位必須保持不變,否則膜電流的變化就不能**膜電導(dǎo)的變化。這一條件是利用電壓鉗技術(shù)實現(xiàn)的。下張幻燈中的右邊兩張圖是Hodgkin和Huxley在半個世紀(jì)以前利用電壓鉗記錄的搶烏賊的動作電位和動作電位過程中的膜電流的變化圖,他們的實驗***證明參與動作電位的離子流由Na,k,漏(Cl)三種成分組成。并對這些離子流進行了定量分析。這一技術(shù)對闡明動作電位的本質(zhì)和離子通道的的研究做出了極大的貢獻。德國高通量全自動膜片鉗產(chǎn)品介紹

與膜片鉗相關(guān)的擴展資料:

【更多】
膜片鉗又稱單通道電流記錄技術(shù),用特制的玻璃微吸管吸附于 細胞表面,使之形成10~100的密封(giga-seal),又稱巨阻封接,被孤立的小膜片面積為μm量級,內(nèi)中*有少數(shù) 離子通道。然后對該膜片實行 電壓鉗位,可測量單個離子通道開放產(chǎn)生的pA(10的負12次方安培)量級的電流,這種通道開放是一種隨機過程。通過觀測單個通道開放和關(guān)閉的電流變化,可直接得到各種 離子通道開放的電流 幅值分布、開放幾率、開放壽命分布等功能參量,并分析它們與 膜電位、離子濃度等之間的關(guān)系。還可把吸管吸附的膜片從細胞膜上分離出來,以膜的外側(cè)向外或膜的內(nèi)側(cè)向外等方式進行實驗研究。這種技術(shù)對 小細胞的 電壓鉗位、改變膜內(nèi)外溶液成分以及施加藥物都很方便。 1976年德國 馬普生物物理化學(xué)研究所Neher和Sakmann***在青蛙肌細胞上用雙電極鉗制 膜電位的同時,記錄到ACh***的單通道 離子電流,從而產(chǎn)生了 膜片鉗技術(shù)。