膜片鉗技術(shù)是一種細(xì)胞內(nèi)記錄技術(shù),是研究離子通道活動的蕞佳工具,也是應(yīng)用蕞很廣的電生理技術(shù)之一。該技術(shù)通過施加負(fù)壓將微玻管電極(膜片電極或膜片吸管)的前列與細(xì)胞膜緊密接觸,形成GΩ以上的阻抗,使電極開口處的細(xì)胞膜與其周圍膜在電學(xué)上絕緣。被孤立的小膜片面積為μm量級,內(nèi)中只有少數(shù)離子通道。玻璃微電極中含有一根浸入電解溶液中的導(dǎo)線,用于傳導(dǎo)離子。在此基礎(chǔ)上對該膜片施行電壓鉗位(即保持跨膜電壓恒定),如果單個離子通道被包含在膜片內(nèi),則可對此膜片上的離子通道的電流進(jìn)行監(jiān)測記錄。通過觀測單個通道開放和關(guān)閉的電流變化,可直接得到各種離子通道開放的電流幅值分布、開放幾率、開放壽命分布等功能參量,并分析它們與膜電位、離子濃度等之間的關(guān)系。還可把吸管吸附的膜片從細(xì)胞膜上分離出來,以膜的外側(cè)向外或膜的內(nèi)側(cè)向外等方式進(jìn)行實驗研究。這種技術(shù)對小細(xì)胞的電壓鉗位、改變膜內(nèi)外溶液成分以及施加藥物都很方便。離子通道的近代觀念源于Hodgkin、Huxley、Katz等人在20世紀(jì)30—50年代的開創(chuàng)性研究。美國全細(xì)胞膜片鉗技術(shù)
早在膜片鉗誕生之前,20世紀(jì)50~60年代,Hodgkin與Hexley便發(fā)現(xiàn)并使用了電壓鉗技術(shù),他們通過雙電極電壓鉗在烏賊軸突上發(fā)現(xiàn)了動作電位的離子機(jī)制,并因此獲得了諾貝爾生理醫(yī)學(xué)獎。這也為后來膜片鉗的誕生奠定了基礎(chǔ)。于1976年,德國馬克斯普朗克生物物理化學(xué)研究所的Neher和Sakmann第1次于青蛙的肌細(xì)胞上,用玻璃電極吸下了一小片細(xì)胞膜,記錄導(dǎo)了皮安級的單通道離子電流,從而產(chǎn)生了膜片鉗技術(shù)。1980年,耶魯大學(xué)醫(yī)學(xué)院Sigworth等人在記錄電極內(nèi)增加了負(fù)壓吸引,實現(xiàn)了10-100GΩ的高阻抗封接,使得單電極可以同時實現(xiàn)鉗制電位和記錄單通道電流。1991年,Neher與Sakmann因為對膜片鉗技術(shù)的突出貢獻(xiàn)獲得了諾貝爾生理醫(yī)學(xué)獎。膜片鉗技術(shù),在人類對生理學(xué)的探究中,無異于一條道路,通往了名為細(xì)胞電生理的國度。膜片鉗技術(shù)也許某一天會被更便捷或更精確的技術(shù)取代,但其至今仍然是離子通道相關(guān)研究中使用蕞廣的技術(shù)。芬蘭全細(xì)胞膜片鉗細(xì)胞功能特性膜片鉗技術(shù)是用玻璃微電極吸管把只含1-3個離子通道、面積為幾個平方微米的細(xì)胞膜通過負(fù)壓吸引封接起來。
膜片鉗技術(shù)是一種細(xì)胞內(nèi)記錄技術(shù),是研究離子通道活動的蕞佳工具,也是應(yīng)用蕞廣的電生理技術(shù)之一。該技術(shù)通過施加負(fù)壓將微玻管電極(膜片電極或膜片吸管)的前端與細(xì)胞膜緊密接觸,形成GΩ以上的阻抗,使電極開口處的細(xì)胞膜與其周圍膜在電學(xué)上絕緣。被孤立的小膜片面積為μm量級,內(nèi)中只有少數(shù)離子通道。玻璃微電極中含有一根浸入電解溶液中的導(dǎo)線,用于傳導(dǎo)離子。在此基礎(chǔ)上對該膜片施行電壓鉗位(即保持跨膜電壓恒定),如果單個離子通道被包含在膜片內(nèi),則可對此膜片上的離子通道的電流進(jìn)行監(jiān)測記錄。通過觀測單個通道開放和關(guān)閉的電流變化,可直接得到各種離子通道開放的電流幅值分布、開放幾率、開放壽命分布等功能參量,并分析它們與膜電位、離子濃度等之間的關(guān)系。還可把吸管吸附的膜片從細(xì)胞膜上分離出來,以膜的外側(cè)向外或膜的內(nèi)側(cè)向外等方式進(jìn)行實驗研究。這種技術(shù)對小細(xì)胞的電壓鉗位、改變膜內(nèi)外溶液成分以及施加藥物都很方便。
高阻封接技術(shù)還明顯降低了電流記錄的背景噪聲,從而戲劇性地提高了時間、空間及電流分辨率,如時間分辨率可達(dá)10μs、空間分辨率可達(dá)1平方微米及電流分辨率可達(dá)10-12A。影響電流記錄分辨率的背景噪聲除了來自于膜片鉗放大器本身外,較主要還是信號源的熱噪聲。信號源如同一個簡單的電阻,其熱噪聲為σn=4Kt△f/R式中σn為電流的均方差根,K為波爾茲曼常數(shù),t為溫度,△f為測量帶寬,R為電阻值??梢?,要得到低噪聲的電流記錄,信號源的內(nèi)阻必需非常高。如在1kHz帶寬,10%精度的條件下,記錄1pA的電流,信號源內(nèi)阻應(yīng)為2GΩ以上。電壓鉗技術(shù)只能測量內(nèi)阻通常達(dá)100kΩ~50MΩ的大細(xì)胞的電流,從而不能用常規(guī)的技術(shù)和制備達(dá)到所要求的分辨率。滔博生物TOP-Bright專注基于多種離子通道靶點的化合物體外篩選,服務(wù)于全球藥企的膜片鉗公司,快速獲得實驗結(jié)果,專業(yè)團(tuán)隊,7*66小時隨時人工在線咨詢.通過研究離子通道的離子流, 從而了解離子運(yùn)輸、信號傳遞等信息。
不同的全自動膜片鉗技術(shù)所采用的原理如PopulationPatchClamp技術(shù)∶同SealChip技術(shù)一樣,完全摒齊了玻璃電極,而是采用PatchPlate平面電極芯片。該芯片含有多個小室,每個小室中含有很多1-2μm的封接孔。在記錄時,每個小室中封接成功的細(xì)胞|數(shù)目較多,獲得的記錄是這些細(xì)胞通道電流的平均值。因此,不同小室其通道電流的一致性非常好,變異系數(shù)很小。美國Axon(MDS)公司采用這一技術(shù)研發(fā)出了全自動高通量的lonWorksQuattro系統(tǒng),成為藥物初期篩選的金標(biāo)準(zhǔn)滔博生物TOP-Bright專注基于多種離子通道靶點的化合物體外篩選,服務(wù)于全球藥企的膜片鉗公司,快速獲得實驗結(jié)果,專業(yè)團(tuán)隊,7*39小時隨時人工在線咨詢.全細(xì)胞膜片鉗記錄是應(yīng)用較早,也是普遍的鉗位技術(shù)。芬蘭全細(xì)胞膜片鉗細(xì)胞功能特性
選擇膜片鉗,選擇細(xì)胞電生理研究的明天!美國全細(xì)胞膜片鉗技術(shù)
電壓鉗的缺點∶電壓鉗技術(shù)目前主要用于巨火細(xì)胞的全細(xì)胞電流研究,特別在分子克隆的卵母細(xì)胞表達(dá)電流的鑒定中發(fā)揮其它技術(shù)不能替代的作用。但也有其致命的弱點1、微電極需刺破細(xì)胞膜進(jìn)入細(xì)胞,以致造成細(xì)胞漿流失,破壞了細(xì)胞生理功能的完整性;2、不能測定單一通道電流。因為電壓鉗制的膜面積很大,包含著大量隨機(jī)開放和關(guān)閉著的通道,而且背景噪音大,往往掩蓋了單一通道的電流。3、對體積小的細(xì)胞(如哺乳類***元,直徑在10-30μm之間)進(jìn)行電壓鉗實驗,技術(shù)上有更大的困難。由于電極需插入細(xì)胞,不得不將微電極的前列做得很細(xì),如此細(xì)的前列致使電極阻抗很大,常常是60~-8OMΩ或120~150MΩ(取決于不同的充灌液)。這樣大的電極阻抗不利于作細(xì)胞內(nèi)電流鉗或電壓鉗記錄時在短時間(μs)內(nèi)向細(xì)胞內(nèi)注入電流,達(dá)到鉗制膜電壓或膜電流之目的。再者,在小細(xì)胞上插入的兩根電極可產(chǎn)生電容而降低測量電壓電極的反應(yīng)能力。美國全細(xì)胞膜片鉗技術(shù)