視頻生成視頻生成與圖像生成在原理上相似,主要分為視頻編輯與視頻自主生成。視頻編輯可應(yīng)用于視頻超分(視頻畫質(zhì)增強)、視頻修復(fù)(老電影上色、畫質(zhì)修復(fù))、視頻畫面剪輯(識別畫面內(nèi)容,自動場景剪輯)。視頻自主生成可應(yīng)用于圖像生成視頻(給定參照圖像,生成一段運動視頻)、文本生成視頻(給定一段描述性文字,生成內(nèi)容相符視頻)?!敬硇援a(chǎn)品或模型】:Deepfake,videoGPT,Gliacloud、Make-A-Video、Imagenvideo等。5、多模態(tài)生成以上四種模態(tài)可以進行組合搭配,進行模態(tài)間轉(zhuǎn)換生成。如文本生成圖像(AI繪畫、根據(jù)prompt提示語生成特定風(fēng)格圖像)、文本生成音頻(AI作曲、根據(jù)prompt提示語生成特定場景音頻)、文本生成視頻(AI視頻制作、根據(jù)一段描述性文本生成語義內(nèi)容相符視頻片段)、圖像生成文本(根據(jù)圖像生成標題、根據(jù)圖像生成故事)、圖像生成視頻。【代表性產(chǎn)品或模型】:DALL-E、MidJourney、StableDiffusion等。 我們?nèi)绾尾拍苤圃斐稣嬲饬x上的智能機器——這樣的智能機器將不再只是對人類大腦的簡單模仿。三明網(wǎng)絡(luò)AIGC用處
AIGC+資訊行業(yè)在信息化時代,社會中充斥著各種資訊,同時這些資訊也有高標準、需求大、時效強等特點。自2014年起,AIGC已開始用于新聞資訊領(lǐng)域,因此資訊行業(yè)是AIGC商業(yè)化相對成熟的賽道。、AIGC輔助信息收集,打造堅實基礎(chǔ)精良的新聞產(chǎn)出必定需要全部、高效、準確的信息收集與整理的基礎(chǔ)上。按照傳統(tǒng)的業(yè)模式,工作人員需要親臨現(xiàn)場,通過各種手段才能獲得足夠且扎實的信息?,F(xiàn)在的AI已經(jīng)能對該環(huán)節(jié)高效賦能,例如科大訊飛的AI轉(zhuǎn)寫工具可以幫助記者實時生成文稿,自動撰寫提綱、精簡語句等,進而提高工作效率,保證特別終產(chǎn)出的時效性。除幫助獲取一手信息外,AI也可以幫助精確檢索二手信息,收集素材。在高性能的AIGC工具如ChatGPT出現(xiàn)后,就可以像常人對話一樣直接提問并獲得答案。雖然難免還是會有這樣那樣的問題,但作為工具而言,AIGC的意義已經(jīng)非常明顯了。、AIGC支持資訊生成,實現(xiàn)高效產(chǎn)出在資訊寫作等生成環(huán)節(jié),基于自然語言生成和自然語言處理技術(shù),AIGC已經(jīng)逐步得到從業(yè)者和消費者的認可,因此有不少企業(yè)積極參與其中。以產(chǎn)出數(shù)量為例,雅虎等外媒合作的AutomatedInsights,其撰稿工具Wordsmith能在一分鐘內(nèi)生成兩千條新聞。 泉州chatgptAIGC案例1963年MIT從美國得到一筆220萬美元的資助,用于研究機器輔助識別.這筆資助來自,高級研究計劃署。。
現(xiàn)代電子計算機的產(chǎn)生便是對人腦思維功能的模擬,是對人腦思維的信息過程的模擬。弱人工智能如今不斷地迅猛發(fā)展,尤其是2008年經(jīng)濟危機后,美日歐希望借機器人等實現(xiàn)再工業(yè)化,工業(yè)機器人以比以往任何時候更快的速度發(fā)展,更加帶動了弱人工智能和相關(guān)領(lǐng)域產(chǎn)業(yè)的不斷突破,很多必須用人來做的工作如今已經(jīng)能用機器人實現(xiàn)。而強人工智能則暫時處于瓶頸,還需要科學(xué)家們和人類的努力。用來研究人工智能的主要物質(zhì)基礎(chǔ)以及能夠?qū)崿F(xiàn)人工智能技術(shù)平臺的機器就是計算機,人工智能的發(fā)展歷史是和計算機科學(xué)技術(shù)的發(fā)展史聯(lián)系在一起的。除了計算機科學(xué)以外,人工智能還涉及信息論、控制論、自動化、仿生學(xué)、生物學(xué)、心理學(xué)、數(shù)理邏輯、語言學(xué)、醫(yī)學(xué)和哲學(xué)等多門學(xué)科。
在沉淀累積階段(1990s~2010s)AIGC逐漸從實驗性轉(zhuǎn)向?qū)嵱眯裕?006年深度學(xué)習(xí)算法取得進展,同時GPU和CPU等算力設(shè)備日益精進,互聯(lián)網(wǎng)快速發(fā)展,為各類人工智能算法提供了海量數(shù)據(jù)進行訓(xùn)練。2007年出版了首部由AIGC創(chuàng)作的小說《在路上》(ITheRoad),2012年微軟展示了全自動同聲傳譯系統(tǒng),主要基于深度神經(jīng)網(wǎng)絡(luò)(DNN),自動將英文講話內(nèi)容通過語音識別等技術(shù)生成中文。在快速發(fā)展階段(2010s~至今)2014年深度學(xué)習(xí)算法“生成式對抗網(wǎng)絡(luò)”(GenerativeAdversarialNetwork,GAN)推出并迭代更新,助力AIGC新發(fā)展。2017年微軟人工智能少年“小冰”推出世界首部由人工智能寫作的詩集《陽光失了玻璃窗》,2018年NVIDIA(英偉達)發(fā)布StyleGAN模型可自動生成圖片,2019年DeepMind發(fā)布DVD-GAN模型可生成連續(xù)視頻。2021年OpenAI推出DALL-E并更新迭代版本DALL-E-2,主要用于文本、圖像的交互生成內(nèi)容。2023年AIGC入世元年而2023年更像是AIGC入世元年,AIGC相關(guān)的話題爆破式的出現(xiàn)在了朋友圈、微博、抖音等社交媒體,正式被大眾所關(guān)注。 他請他們到 VERMONT參加 " DARTMOUTH人工智能夏季研究會".
人工智能學(xué)科研究的主要內(nèi)容包括:知識表示、自動推理和搜索方法、機器學(xué)習(xí)和知識獲取、知識處理系統(tǒng)、自然語言理解、計算機視覺、智能機器人、自動程序設(shè)計等方面。研究方法如今沒有統(tǒng)一的原理或范式指導(dǎo)人工智能研究。許多問題上研究者都存在爭論。其中幾個長久以來仍沒有結(jié)論的問題是:是否應(yīng)從心理或神經(jīng)方面模擬人工智能?或者像鳥類生物學(xué)對于航空工程一樣,人類生物學(xué)對于人工智能研究是沒有關(guān)系的?智能行為能否用簡單的原則(如邏輯或優(yōu)化)來描述?還是必須解決大量完全無關(guān)的問題?智能是否可以使用高級符號表達,如詞和想法?還是需要“子符號”的處理?JOHNHAUGELAND提出了GOFAI(出色的老式人工智能)的概念,也提議人工智能應(yīng)歸類為SYNTHETICINTELLIGENCE,這個概念后來被某些非GOFAI研究者采納。 盡管還很簡陋,這些系統(tǒng)已能夠通過黑白區(qū)別分辨出物件形狀的不同.福州軟件AIGC費用
以人類的智慧創(chuàng)造出堪與人類大腦相平行的機器腦(人工智能),對人類來說是一個極具誘惑的領(lǐng)域。三明網(wǎng)絡(luò)AIGC用處
20世紀70年代以來,人工智能被稱為世界三大技術(shù)之一(空間技術(shù)、能源技術(shù)、人工智能)。也被認為是21世紀三大技術(shù)(基因工程、納米科學(xué)、人工智能)之一。這是因為近三十年來它獲得了迅速的發(fā)展,在很多學(xué)科領(lǐng)域都獲得了廣泛應(yīng)用,并取得了豐碩的成果,人工智能已逐步成為一個孑立的分支,無論在理論和實踐上都已自成一個系統(tǒng)。人工智能是研究使用計算機來模擬人的某些思維過程和智能行為(如學(xué)習(xí)、推理、思考、規(guī)劃等)的學(xué)科,主要包括計算機實現(xiàn)智能的原理、制造類似于人腦智能的計算機,使計算機能實現(xiàn)更高層次的應(yīng)用。人工智能將涉及到計算機科學(xué)、心理學(xué)、哲學(xué)和語言學(xué)等學(xué)科??梢哉f幾乎是自然科學(xué)和社會科學(xué)的所有學(xué)科,其范圍已遠遠超出了計算機科學(xué)的范疇,人工智能與思維科學(xué)的關(guān)系是實踐和理論的關(guān)系,人工智能是處于思維科學(xué)的技術(shù)應(yīng)用層次,是它的一個應(yīng)用分支。從思維觀點看,人工智能不僅限于邏輯思維,要考慮形象思維、靈感思維才能促進人工智能的突破性的發(fā)展,數(shù)學(xué)常被認為是多種學(xué)科的基礎(chǔ)科學(xué),數(shù)學(xué)也進入語言、思維領(lǐng)域,人工智能學(xué)科也必須借用數(shù)學(xué)工具,數(shù)學(xué)不僅在標準邏輯、模糊數(shù)學(xué)等范圍發(fā)揮作用,數(shù)學(xué)進入人工智能學(xué)科。 三明網(wǎng)絡(luò)AIGC用處