據(jù)不完全統(tǒng)計(jì),截至目前,中國(guó)10億級(jí)參數(shù)規(guī)模以上大模型已發(fā)布79個(gè),相關(guān)應(yīng)用行業(yè)正從辦公、生活、娛樂等方向,向醫(yī)療、工業(yè)、教育等領(lǐng)域快速拓展。在科技企業(yè)“內(nèi)卷”的同時(shí),怎樣實(shí)現(xiàn)大模型在產(chǎn)業(yè)界的落地已成為受外界關(guān)注的議題之一。 杭州音視貝科技公司深入醫(yī)療行業(yè),通過與當(dāng)?shù)蒯t(yī)保局合作,積累了大量知識(shí)庫數(shù)據(jù),為大模型提供了更加*精細(xì)的數(shù)據(jù)支持,同時(shí)融入醫(yī)療知識(shí)圖譜,提升模型對(duì)上下文和背景知識(shí)的理解利用,提升醫(yī)療垂直任務(wù)的準(zhǔn)確性。另外,由于醫(yī)療行業(yè)會(huì)涉及到用戶的個(gè)人隱私問題,解決方案支持私有化部署。 大模型適用于需要更高精度和更復(fù)雜決策的任務(wù),而小模型則適用于資源有限或?qū)τ?jì)算效率要求較...
隨著大模型在各個(gè)行業(yè)的應(yīng)用,智能客服也得以迅速發(fā)展,為企業(yè)、機(jī)構(gòu)節(jié)省了大量人力、物力、財(cái)力,提高了客服效率和客戶滿意度。那么,該如何選擇合適的智能客服解決方案呢? 1、自動(dòng)語音應(yīng)答技術(shù)(AVA)是否成熟自動(dòng)語音應(yīng)答技術(shù)可以實(shí)現(xiàn)自動(dòng)接聽電話、自動(dòng)語音提示、自動(dòng)語音導(dǎo)航等功能。用戶可以通過語音識(shí)別和語音合成技術(shù)與AI客服進(jìn)行溝通交流,并獲取準(zhǔn)確的服務(wù)。因此,在選擇智能客服解決方案時(shí),需要考慮AVA技術(shù)的成熟度以及語音識(shí)別準(zhǔn)確度。 2、語義理解和自然語言處理技術(shù)智能客服在接收到用戶的語音指令后,需要對(duì)用戶的意圖進(jìn)行準(zhǔn)確判斷。智能客服系統(tǒng)通過深度學(xué)習(xí)、語料庫等技術(shù),將人類語言轉(zhuǎn)...
大模型的訓(xùn)練通常需要大量的計(jì)算資源(如GPU、TPU等)和時(shí)間。同時(shí),還需要充足的數(shù)據(jù)集和合適的訓(xùn)練策略來獲得更好的性能。因此,進(jìn)行大模型訓(xùn)練需要具備一定的技術(shù)和資源條件。 1、數(shù)據(jù)準(zhǔn)備:收集和準(zhǔn)備用于訓(xùn)練的數(shù)據(jù)集??梢砸延械墓_數(shù)據(jù)集,也可以是您自己收集的數(shù)據(jù)。數(shù)據(jù)集應(yīng)該包含適當(dāng)?shù)臉?biāo)注或注釋,以便模型能夠?qū)W習(xí)特定的任務(wù)。 2、數(shù)據(jù)預(yù)處理:包括文本清洗、分詞、建立詞表、編碼等處理步驟,以便將數(shù)據(jù)轉(zhuǎn)換為模型可以處理的格式。 3、構(gòu)建模型結(jié)構(gòu):選擇合適的模型結(jié)構(gòu)是訓(xùn)練一個(gè)大模型的關(guān)鍵。根據(jù)任務(wù)的要求和具體情況來選擇適合的模型結(jié)構(gòu)。 4、模型初始化:在訓(xùn)練開始之前...
Meta7月19日在其官網(wǎng)宣布大語言模型Llama2正式發(fā)布,這是Meta大語言模型新的版本,也是Meta較早開源商用的大語言模型,同時(shí),微軟Azure也宣布了將與Llama2深度合作。根據(jù)Meta的官方數(shù)據(jù),Llama2相較于上一代其訓(xùn)練數(shù)據(jù)提升了40%,包含了70億、130億和700億參數(shù)3個(gè)版本。Llama2預(yù)訓(xùn)練模型接受了2萬億個(gè)tokens的訓(xùn)練,上下文長(zhǎng)度是Llama1的兩倍,其微調(diào)模型已經(jīng)接受了超過100萬個(gè)人類注釋的訓(xùn)練。其性能據(jù)說比肩,也被稱為開源比較好的大模型??茖W(xué)家NathanLambert周二在博客文章中寫道:“基本模型似乎非常強(qiáng)大(超越GPT-3),并且經(jīng)過微...
大模型訓(xùn)練過程復(fù)雜且成本高主要是由以下幾個(gè)因素導(dǎo)致的: 1、參數(shù)量大的模型通常擁有龐大的數(shù)據(jù)量,例如億級(jí)別的參數(shù)。這樣的龐大參數(shù)量需要更多的內(nèi)存和計(jì)算資源來存儲(chǔ)和處理,增加了訓(xùn)練過程的復(fù)雜性和成本。 2、需要大規(guī)模訓(xùn)練數(shù)據(jù):為了訓(xùn)練大模型,需要收集和準(zhǔn)備大規(guī)模的訓(xùn)練數(shù)據(jù)集。這些數(shù)據(jù)集包含了豐富的語言信息和知識(shí),需要耗費(fèi)大量時(shí)間和人力成本來收集、清理和標(biāo)注。同時(shí),為了獲得高質(zhì)量的訓(xùn)練結(jié)果,數(shù)據(jù)集的規(guī)模通常需要保持在很大的程度上,使得訓(xùn)練過程變得更為復(fù)雜和昂貴。 3、需要大量的計(jì)算資源:訓(xùn)練大模型需要大量的計(jì)算資源,包括高性能的CPU、GPU或者TPU集群。這是因?yàn)榇?..
大模型知識(shí)庫系統(tǒng)作為一種日常辦公助手,慢慢走入中小企業(yè),在體會(huì)到系統(tǒng)便利性的同時(shí),一定不要忘記給系統(tǒng)做優(yōu)化,為什么呢? 1、優(yōu)化系統(tǒng),可以提高系統(tǒng)的性能和響應(yīng)速度。大型知識(shí)庫系統(tǒng)通常包含海量的數(shù)據(jù)和復(fù)雜的邏輯處理,如果系統(tǒng)性能不佳,查詢和操作可能會(huì)變得緩慢,影響用戶的體驗(yàn)。通過優(yōu)化系統(tǒng),可以提高系統(tǒng)的性能和響應(yīng)速度,減少用戶等待時(shí)間,增加系統(tǒng)的吞吐量和并發(fā)處理能力。 2、優(yōu)化系統(tǒng),可以提升數(shù)據(jù)訪問效率。大型知識(shí)庫系統(tǒng)中的數(shù)據(jù)通常以結(jié)構(gòu)化或半結(jié)構(gòu)化的形式存在,并且可能需要進(jìn)行復(fù)雜的查詢和關(guān)聯(lián)操作。通過優(yōu)化存儲(chǔ)和索引結(jié)構(gòu),以及搜索算法和查詢語句的優(yōu)化,可以加快數(shù)據(jù)的檢索和訪...
優(yōu)化大型知識(shí)庫系統(tǒng)可以提高系統(tǒng)的性能和響應(yīng)速度,提升數(shù)據(jù)訪問效率,實(shí)現(xiàn)擴(kuò)展和高可用性,另外還可以節(jié)省資源和成本,并提供個(gè)性化和智能化服務(wù),從而提升系統(tǒng)的價(jià)值和競(jìng)爭(zhēng)力。 1、優(yōu)化系統(tǒng),可以為企業(yè)節(jié)省資源和成本。優(yōu)化大型知識(shí)庫系統(tǒng)可以有效地利用計(jì)算資源和存儲(chǔ)空間,減少不必要的資源浪費(fèi)。通過緩存機(jī)制、異步處理和任務(wù)隊(duì)列等技術(shù),可以降低系統(tǒng)的負(fù)載和資源消耗,提高系統(tǒng)的效率和資源利用率,從而降低運(yùn)營(yíng)成本。 2、優(yōu)化系統(tǒng),可以提供使用者提供更加個(gè)性化和智能化的服務(wù)。通過對(duì)大型知識(shí)庫系統(tǒng)進(jìn)行優(yōu)化,可以更好地使用用戶的歷史數(shù)據(jù)和行為,提供個(gè)性化和智能化的服務(wù)。通過優(yōu)化搜索算法和推薦系統(tǒng),可以更...
大模型和小模型在應(yīng)用上有很多不同之處,企業(yè)在選擇的時(shí)候還是要根據(jù)自身的實(shí)際情況,選擇適合自己的數(shù)據(jù)模型才是重要。現(xiàn)在小編就跟大家分析以下大小模型的不同之處,供大家在選擇的時(shí)候進(jìn)行對(duì)比分析: 1、模型規(guī)模:大模型通常擁有更多的參數(shù)和更深的層級(jí),可以處理更多的細(xì)節(jié)和復(fù)雜性。而小模型則相對(duì)規(guī)模較小,在計(jì)算和存儲(chǔ)上更為高效。 2、精度和性能:大模型通常在處理任務(wù)時(shí)能夠提供更高的精度和更好的性能。而小模型只有在處理簡(jiǎn)單任務(wù)或在計(jì)算資源有限的環(huán)境中表現(xiàn)良好。 3、訓(xùn)練成本和時(shí)間:大模型需要更多的訓(xùn)練數(shù)據(jù)和計(jì)算資源來訓(xùn)練,因此訓(xùn)練時(shí)間和成本可能較高。小模型相對(duì)較快且成本較低,適...
杭州音視貝科技公司研發(fā)的大模型知識(shí)庫系統(tǒng)產(chǎn)品,主要有以下幾個(gè)方面的功能: 1、知識(shí)標(biāo)簽:從業(yè)務(wù)和管理的角度對(duì)知識(shí)進(jìn)行標(biāo)注,文檔在采集過程中會(huì)自動(dòng)生成該文檔的基本屬性,例如:分類、編號(hào)、名稱、日期等,支持自定義; 2、知識(shí)檢索:支持通過關(guān)鍵字對(duì)文檔標(biāo)題或內(nèi)容進(jìn)行檢索; 3、知識(shí)推送:將更新的知識(shí)庫內(nèi)容主動(dòng)推送給相關(guān)人員; 4、知識(shí)回答:支持在線提問可先在知識(shí)庫中進(jìn)行匹配,匹配失敗或不滿意時(shí)可通過提示,轉(zhuǎn)接至互聯(lián)網(wǎng)中進(jìn)行二次匹配; 5、知識(shí)權(quán)限:支持根據(jù)不同的崗位設(shè)置不同的知識(shí)提取權(quán)限,管理員可進(jìn)行相關(guān)知識(shí)庫的維護(hù)和更新。 從2022年開始,以ChatGPT為主的...
雖然說大模型在處理智能客服在情感理解方面的問題上取得了很大的進(jìn)步,但由于情感是主觀的,不同人對(duì)相同文本可能產(chǎn)生不同的情感理解。大模型難以從各種角度準(zhǔn)確理解和表達(dá)情感。比如同一個(gè)人在心情愉悅和生氣的兩種狀態(tài)下,雖然都是同樣的回答,但表達(dá)的意思可能截然相反。此時(shí),如果用戶沒有明確給出自己所處的具體情感狀態(tài),大模型就有可能給出錯(cuò)誤的答案。 但我們?nèi)匀豢梢越柚嗄B(tài)信息處理、強(qiáng)化學(xué)習(xí)和遷移學(xué)習(xí)、用戶反饋的學(xué)習(xí),以及情感識(shí)別和情感生成模型的結(jié)合等方式來改善情感理解的能力。然而,這需要更多的研究和技術(shù)創(chuàng)新來解決挑戰(zhàn),并提高情感理解的準(zhǔn)確性和適應(yīng)性。 與此同時(shí),在過去幾個(gè)月,幾乎每周都有企業(yè)入局大...
大模型和小模型在應(yīng)用上有很多不同之處,企業(yè)在選擇的時(shí)候還是要根據(jù)自身的實(shí)際情況,選擇適合自己的數(shù)據(jù)模型才是重要?,F(xiàn)在小編就跟大家分析以下大小模型的不同之處,供大家在選擇的時(shí)候進(jìn)行對(duì)比分析: 1、模型規(guī)模:大模型通常擁有更多的參數(shù)和更深的層級(jí),可以處理更多的細(xì)節(jié)和復(fù)雜性。而小模型則相對(duì)規(guī)模較小,在計(jì)算和存儲(chǔ)上更為高效。 2、精度和性能:大模型通常在處理任務(wù)時(shí)能夠提供更高的精度和更好的性能。而小模型只有在處理簡(jiǎn)單任務(wù)或在計(jì)算資源有限的環(huán)境中表現(xiàn)良好。 3、訓(xùn)練成本和時(shí)間:大模型需要更多的訓(xùn)練數(shù)據(jù)和計(jì)算資源來訓(xùn)練,因此訓(xùn)練時(shí)間和成本可能較高。小模型相對(duì)較快且成本較低,適...
5月28日,在北京舉行的中關(guān)村論壇平行論壇“人工智能大模型發(fā)展論壇”上,中國(guó)科學(xué)技術(shù)信息研究所所長(zhǎng)趙志耘發(fā)布了《中國(guó)人工智能大模型地圖研究報(bào)告》。報(bào)告顯示,中國(guó)大模型呈現(xiàn)蓬勃發(fā)展態(tài)勢(shì),據(jù)不完全統(tǒng)計(jì),到目前為止,中國(guó)10億級(jí)參數(shù)規(guī)模以上大模型已發(fā)布了80余個(gè)。從研發(fā)主體分布看,大學(xué)、科研機(jī)構(gòu)、企業(yè)等不同創(chuàng)新主體都在積極參與大模型研發(fā)。杭州音視貝科技公司專注于人工智能領(lǐng)域智能語音、智能客服等產(chǎn)品的研發(fā)。自成立已來已在各行各業(yè)服務(wù)于多家企事業(yè)單位,助力企業(yè)智能化升級(jí),降本增效,提升用戶滿意度?,F(xiàn)在經(jīng)過公司研發(fā)團(tuán)隊(duì)夜以繼日的奮戰(zhàn),終于完成大模型在智能客服領(lǐng)域的應(yīng)用。相比之前的產(chǎn)品,現(xiàn)在的智...
據(jù)不完全統(tǒng)計(jì),截至目前,中國(guó)10億級(jí)參數(shù)規(guī)模以上大模型已發(fā)布79個(gè),相關(guān)應(yīng)用行業(yè)正從辦公、生活、娛樂等方向,向醫(yī)療、工業(yè)、教育等領(lǐng)域快速拓展。在科技企業(yè)“內(nèi)卷”的同時(shí),怎樣實(shí)現(xiàn)大模型在產(chǎn)業(yè)界的落地已成為受外界關(guān)注的議題之一。 杭州音視貝科技公司深入醫(yī)療行業(yè),通過與當(dāng)?shù)蒯t(yī)保局合作,積累了大量知識(shí)庫數(shù)據(jù),為大模型提供了更加*精細(xì)的數(shù)據(jù)支持,同時(shí)融入醫(yī)療知識(shí)圖譜,提升模型對(duì)上下文和背景知識(shí)的理解利用,提升醫(yī)療垂直任務(wù)的準(zhǔn)確性。另外,由于醫(yī)療行業(yè)會(huì)涉及到用戶的個(gè)人隱私問題,解決方案支持私有化部署。 當(dāng)下企業(yè)對(duì)于智能客服的需求為7X24小時(shí)全天候的客服和售前、售中、售后的全鏈路服務(wù)。福...
現(xiàn)在各行各業(yè)都在接入大模型,讓自家的產(chǎn)品更智能,但事實(shí)情況真的是這樣嗎? 事實(shí)是通用性大模型的數(shù)據(jù)庫大多基于互聯(lián)網(wǎng)的公開數(shù)據(jù),當(dāng)有人提問時(shí),大模型只能從既定的數(shù)據(jù)庫中查找答案,特別是當(dāng)一個(gè)問題我們需要非常專業(yè)的回答時(shí),得到的答案只能是泛泛而談。這就是通用大模型,對(duì)于對(duì)數(shù)據(jù)準(zhǔn)確性要求較高的用戶,這樣的回答遠(yuǎn)遠(yuǎn)不能滿足要求。根據(jù)摩根士丹利發(fā)布的一項(xiàng)調(diào)查顯示,只有4%的人表示對(duì)于ChatGPT使用有依賴。 有沒有辦法改善大模型回答不準(zhǔn)確的情況?當(dāng)然有。這就是在通用大模型的基礎(chǔ)上的垂直大模型,可以基于大模型和企業(yè)的個(gè)性化數(shù)據(jù)庫,進(jìn)行私人定制,建立專屬的知識(shí)庫系統(tǒng),提高...
那么,AI大模型在醫(yī)療行業(yè)有哪些具體的應(yīng)用呢? 1、病例分析與輔助診斷AI大模型在智慧醫(yī)療領(lǐng)域的應(yīng)用之一是病例分析和輔助診斷。過去,醫(yī)生通常需要花費(fèi)大量的時(shí)間來閱讀文獻(xiàn),查找相關(guān)的病例信息進(jìn)行診斷。AI大模型可以通過學(xué)習(xí)海量的醫(yī)學(xué)文獻(xiàn)和病例數(shù)據(jù)庫知識(shí),快速提供輔助診療的建議。 2、醫(yī)學(xué)圖像分析與識(shí)別傳統(tǒng)的醫(yī)學(xué)圖像分析通常需要醫(yī)生進(jìn)行手動(dòng)標(biāo)注和識(shí)別,費(fèi)時(shí)費(fèi)力。AI大模型可運(yùn)用自身的技術(shù)能力學(xué)習(xí)大量的醫(yī)學(xué)圖像數(shù)據(jù),自動(dòng)識(shí)別和分析圖像中的病理特征,為醫(yī)生提供有力的參考。 3、藥物研發(fā)與創(chuàng)新AI大模型從大量的化學(xué)信息和生物數(shù)據(jù)中挖掘規(guī)律,預(yù)測(cè)分子結(jié)構(gòu)和活性,幫助科學(xué)家篩選...
目前國(guó)內(nèi)大型模型出現(xiàn)百家爭(zhēng)鳴的景象,各自的產(chǎn)品都各有千秋,還沒有誰能做到一家獨(dú)大。國(guó)內(nèi)Top-5的大模型公司,分別是:百度的文心一言、阿里的通義千問、騰訊的混元、華為的盤古以及科大訊飛的星火。 1、百度的文心一言:它是在產(chǎn)業(yè)實(shí)際應(yīng)用中真正產(chǎn)生價(jià)值的一個(gè)模型,它不僅從無監(jiān)督的語料中學(xué)習(xí)知識(shí),還通過百度多年積累的海量知識(shí)中學(xué)習(xí)。這些知識(shí),是高質(zhì)量的訓(xùn)練語料,有一些是人工精標(biāo)的,有一些是自動(dòng)生成的。文心大模型參數(shù)量非常大,達(dá)到了2600億。 2、阿里的通義千問:它是一個(gè)超大規(guī)模的語言模型,具備多輪對(duì)話、文案創(chuàng)作、邏輯推理、多模態(tài)理解、多語言支持等功能。參數(shù)已從萬億升級(jí)至10萬...
大模型具有更強(qiáng)的語言理解能力主要是因?yàn)橐韵聨讉€(gè)原因:1、更多的參數(shù)和更深的結(jié)構(gòu):大模型通常擁有更多的參數(shù)和更深的結(jié)構(gòu),能夠更好地捕捉語言中的復(fù)雜關(guān)系和模式。通過更深的層次和更多的參數(shù),模型可以學(xué)習(xí)到更多的抽象表示,從而能夠更好地理解復(fù)雜的句子結(jié)構(gòu)和語義。2、大規(guī)模預(yù)訓(xùn)練:大模型通常使用大規(guī)模的預(yù)訓(xùn)練數(shù)據(jù)進(jìn)行預(yù)訓(xùn)練,并從中學(xué)習(xí)到豐富的語言知識(shí)。在預(yù)訓(xùn)練階段,模型通過大量的無監(jiān)督學(xué)習(xí)任務(wù),如語言建模、掩碼語言模型等,提前學(xué)習(xí)語言中的各種模式和語言規(guī)律。這為模型提供了語言理解能力的基礎(chǔ)。3、上下文感知能力:大模型能夠更好地理解上下文信息。它們能夠在生成答案時(shí)考慮到前面的問題或?qū)υ挌v史,以...
AI大模型正在世界各地如火如荼地發(fā)展著,ChatGPT的出現(xiàn)降低各行各業(yè)使用人工智能的門檻,每一個(gè)領(lǐng)域都有自己的知識(shí)體系,靠大模型難以滿足垂直領(lǐng)域的需求,杭州音視貝科技公司致力于大模型在智能客服領(lǐng)域的應(yīng)用,提升客戶滿意度,具體解決方案如下: 1、即時(shí)響應(yīng):對(duì)于客戶的提問和問題,智能客服應(yīng)該能夠快速、準(zhǔn)確地提供解答或者轉(zhuǎn)接至適當(dāng)?shù)娜藛T處理,避免讓客戶等待過久。 2、個(gè)性化服務(wù):智能客服可以利用機(jī)器學(xué)習(xí)和自然語言處理技術(shù),了解客戶的偏好和需求,并根據(jù)這些信息提供定制化的解決方案。 3、持續(xù)學(xué)習(xí):通過分析客戶反饋和交互數(shù)據(jù),了解客戶的需求,并進(jìn)行相應(yīng)的調(diào)整和改進(jìn)。 ...
據(jù)不完全統(tǒng)計(jì),截至目前,中國(guó)10億級(jí)參數(shù)規(guī)模以上大模型已發(fā)布79個(gè),相關(guān)應(yīng)用行業(yè)正從辦公、生活、娛樂等方向,向醫(yī)療、工業(yè)、教育等領(lǐng)域快速拓展。在科技企業(yè)“內(nèi)卷”的同時(shí),怎樣實(shí)現(xiàn)大模型在產(chǎn)業(yè)界的落地已成為受外界關(guān)注的議題之一。 杭州音視貝科技公司深入醫(yī)療行業(yè),通過與當(dāng)?shù)蒯t(yī)保局合作,積累了大量知識(shí)庫數(shù)據(jù),為大模型提供了更加*精細(xì)的數(shù)據(jù)支持,同時(shí)融入醫(yī)療知識(shí)圖譜,提升模型對(duì)上下文和背景知識(shí)的理解利用,提升醫(yī)療垂直任務(wù)的準(zhǔn)確性。另外,由于醫(yī)療行業(yè)會(huì)涉及到用戶的個(gè)人隱私問題,解決方案支持私有化部署。 企業(yè)期望實(shí)現(xiàn)的效果是降低人力運(yùn)營(yíng)成本以及提高相應(yīng)效率和客戶滿意度。廣州通用大模型應(yīng)用場(chǎng)...
大模型的訓(xùn)練通常需要大量的計(jì)算資源(如GPU、TPU等)和時(shí)間。同時(shí),還需要充足的數(shù)據(jù)集和合適的訓(xùn)練策略來獲得更好的性能。因此,進(jìn)行大模型訓(xùn)練需要具備一定的技術(shù)和資源條件。 1、數(shù)據(jù)準(zhǔn)備:收集和準(zhǔn)備用于訓(xùn)練的數(shù)據(jù)集??梢砸延械墓_數(shù)據(jù)集,也可以是您自己收集的數(shù)據(jù)。數(shù)據(jù)集應(yīng)該包含適當(dāng)?shù)臉?biāo)注或注釋,以便模型能夠?qū)W習(xí)特定的任務(wù)。 2、數(shù)據(jù)預(yù)處理:包括文本清洗、分詞、建立詞表、編碼等處理步驟,以便將數(shù)據(jù)轉(zhuǎn)換為模型可以處理的格式。 3、構(gòu)建模型結(jié)構(gòu):選擇合適的模型結(jié)構(gòu)是訓(xùn)練一個(gè)大模型的關(guān)鍵。根據(jù)任務(wù)的要求和具體情況來選擇適合的模型結(jié)構(gòu)。 4、模型初始化:在訓(xùn)練開始之前...
隨著機(jī)器學(xué)習(xí)與深度學(xué)習(xí)技術(shù)的不斷發(fā)展,大模型的重要性逐漸得到認(rèn)可。大模型也逐漸在各個(gè)領(lǐng)域取得突破性進(jìn)展,那么企業(yè)在選擇大模型時(shí)需要注意哪些問題呢? 1、任務(wù)需求:確保選擇的大模型與您的任務(wù)需求相匹配。不同的大模型在不同的領(lǐng)域和任務(wù)上有不同的優(yōu)勢(shì)和局限性。例如,某些模型可能更適合處理自然語言處理任務(wù),而其他模型可能更適合計(jì)算機(jī)視覺任務(wù)。 2、計(jì)算資源:大模型通常需要較大的計(jì)算資源來進(jìn)行訓(xùn)練和推理。確保您有足夠的計(jì)算資源來支持所選模型的訓(xùn)練和應(yīng)用。這可能涉及到使用高性能的GPU或TPU,以及具備足夠的存儲(chǔ)和內(nèi)存。 3、數(shù)據(jù)集大小:大模型通常需要大量的數(shù)據(jù)進(jìn)行訓(xùn)練,以獲...
客服是企業(yè)與客戶之間提供聯(lián)絡(luò)的重要紐帶,在越來越重視用戶體驗(yàn)和評(píng)價(jià)的當(dāng)下,客服質(zhì)量的高低直接影響了企業(yè)未來發(fā)展的命運(yùn)。 在客服行業(yè)發(fā)展的初期,一般為客戶在產(chǎn)品出現(xiàn)問題后撥打商家電話,類似售后服務(wù)之類的。然后出現(xiàn)了IVR菜單導(dǎo)航,用戶根據(jù)語音提示按鍵操作。以上兩種模式一是服務(wù)比較滯后,二是操作復(fù)雜,用戶體驗(yàn)都差。 現(xiàn)在隨著語音識(shí)別技術(shù)的不斷發(fā)展,用戶只要根據(jù)語音提示說出需要辦理的業(yè)務(wù),后臺(tái)通過智能工單系統(tǒng)自動(dòng)分配到對(duì)應(yīng)的客服。但此時(shí)的技術(shù)還不成熟,主要是基于關(guān)鍵詞檢索,所以經(jīng)常會(huì)出現(xiàn)系統(tǒng)被問傻的情況,用戶體驗(yàn)依舊很差。 2022年開始,以ChatGPT為...
據(jù)不完全統(tǒng)計(jì),截至目前,中國(guó)10億級(jí)參數(shù)規(guī)模以上大模型已發(fā)布79個(gè),相關(guān)應(yīng)用行業(yè)正從辦公、生活、娛樂等方向,向醫(yī)療、工業(yè)、教育等領(lǐng)域快速拓展。在科技企業(yè)“內(nèi)卷”的同時(shí),怎樣實(shí)現(xiàn)大模型在產(chǎn)業(yè)界的落地已成為受外界關(guān)注的議題之一。 杭州音視貝科技公司深入醫(yī)療行業(yè),通過與當(dāng)?shù)蒯t(yī)保局合作,積累了大量知識(shí)庫數(shù)據(jù),為大模型提供了更加*精細(xì)的數(shù)據(jù)支持,同時(shí)融入醫(yī)療知識(shí)圖譜,提升模型對(duì)上下文和背景知識(shí)的理解利用,提升醫(yī)療垂直任務(wù)的準(zhǔn)確性。另外,由于醫(yī)療行業(yè)會(huì)涉及到用戶的個(gè)人隱私問題,解決方案支持私有化部署。 AI大模型能為醫(yī)生提供病歷管理、患者管理、智能隨訪、醫(yī)療知識(shí)庫等服務(wù),減輕醫(yī)生工作壓力...
Meta7月19日在其官網(wǎng)宣布大語言模型Llama2正式發(fā)布,這是Meta大語言模型新的版本,也是Meta較早開源商用的大語言模型,同時(shí),微軟Azure也宣布了將與Llama2深度合作。根據(jù)Meta的官方數(shù)據(jù),Llama2相較于上一代其訓(xùn)練數(shù)據(jù)提升了40%,包含了70億、130億和700億參數(shù)3個(gè)版本。Llama2預(yù)訓(xùn)練模型接受了2萬億個(gè)tokens的訓(xùn)練,上下文長(zhǎng)度是Llama1的兩倍,其微調(diào)模型已經(jīng)接受了超過100萬個(gè)人類注釋的訓(xùn)練。其性能據(jù)說比肩,也被稱為開源比較好的大模型??茖W(xué)家NathanLambert周二在博客文章中寫道:“基本模型似乎非常強(qiáng)大(超越GPT-3),并且經(jīng)過微...
隨著大模型在各個(gè)行業(yè)的應(yīng)用,智能客服也得以迅速發(fā)展,為企業(yè)、機(jī)構(gòu)節(jié)省了大量人力、物力、財(cái)力,提高了客服效率和客戶滿意度。那么,該如何選擇合適的智能客服解決方案呢? 1、自動(dòng)語音應(yīng)答技術(shù)(AVA)是否成熟自動(dòng)語音應(yīng)答技術(shù)可以實(shí)現(xiàn)自動(dòng)接聽電話、自動(dòng)語音提示、自動(dòng)語音導(dǎo)航等功能。用戶可以通過語音識(shí)別和語音合成技術(shù)與AI客服進(jìn)行溝通交流,并獲取準(zhǔn)確的服務(wù)。因此,在選擇智能客服解決方案時(shí),需要考慮AVA技術(shù)的成熟度以及語音識(shí)別準(zhǔn)確度。 2、語義理解和自然語言處理技術(shù)智能客服在接收到用戶的語音指令后,需要對(duì)用戶的意圖進(jìn)行準(zhǔn)確判斷。智能客服系統(tǒng)通過深度學(xué)習(xí)、語料庫等技術(shù),將人類語言轉(zhuǎn)...
智能客服機(jī)器人在應(yīng)對(duì)復(fù)雜問題、語義理解和情感回應(yīng)方面存在一些弊端。杭州音視貝科技把AI大模型和智能客服結(jié)合在一起,解決了這些問題。 大模型具有更強(qiáng)大的語言模型和學(xué)習(xí)能力,能夠更好地理解復(fù)雜語境下的問題。通過上下文感知進(jìn)行對(duì)話回復(fù),保持對(duì)話的連貫性。并且可以記住之前的問題和回答,以更好地響應(yīng)后續(xù)的提問。 大模型可以記憶和學(xué)習(xí)用戶的偏好和選擇,通過分析用戶的歷史對(duì)話數(shù)據(jù),在回答問題時(shí)提供更個(gè)性化和針對(duì)性的建議。這有助于提升服務(wù)的質(zhì)量和用戶滿意度。 大模型可以結(jié)合多模態(tài)信息,例如圖像、音頻和視頻,通過分析多種感知信息,從多個(gè)角度進(jìn)行情感的推斷和判斷。 在全球范圍內(nèi),已有多個(gè)平臺(tái)...
人工智能大模型知識(shí)庫是一個(gè)包含了大量知識(shí)和信息的數(shù)據(jù)庫,這些知識(shí)可以來源于書籍、新聞等文獻(xiàn)資料,也可以通過自動(dòng)化技術(shù)從互聯(lián)網(wǎng)或其他數(shù)據(jù)源中獲取。它以機(jī)器學(xué)習(xí)和自然語言處理為基礎(chǔ),通過大規(guī)模數(shù)據(jù)的訓(xùn)練得到的能夠模擬人類知識(shí)、理解語義關(guān)系并生成相應(yīng)回答的模型。大模型知識(shí)庫系統(tǒng)的特點(diǎn)主要有以下幾個(gè): 1、大規(guī)模訓(xùn)練數(shù)據(jù):人工智能大模型知識(shí)庫需要依賴龐大的數(shù)據(jù)集進(jìn)行訓(xùn)練,以提升其知識(shí)儲(chǔ)備和理解能力。 2、強(qiáng)大的學(xué)習(xí)能力:大模型知識(shí)庫通過不斷迭代優(yōu)化算法,能夠從經(jīng)驗(yàn)中學(xué)習(xí)并進(jìn)一步增強(qiáng)其表達(dá)和推理能力。3、多領(lǐng)域的應(yīng)用:大模型知識(shí)庫具備很多的知識(shí)儲(chǔ)備,適用于不同領(lǐng)域的問題解決和知識(shí)推斷,豐...
大模型訓(xùn)練過程復(fù)雜且成本高主要是由以下幾個(gè)因素導(dǎo)致的: 1、參數(shù)量大的模型通常擁有龐大的數(shù)據(jù)量,例如億級(jí)別的參數(shù)。這樣的龐大參數(shù)量需要更多的內(nèi)存和計(jì)算資源來存儲(chǔ)和處理,增加了訓(xùn)練過程的復(fù)雜性和成本。 2、需要大規(guī)模訓(xùn)練數(shù)據(jù):為了訓(xùn)練大模型,需要收集和準(zhǔn)備大規(guī)模的訓(xùn)練數(shù)據(jù)集。這些數(shù)據(jù)集包含了豐富的語言信息和知識(shí),需要耗費(fèi)大量時(shí)間和人力成本來收集、清理和標(biāo)注。同時(shí),為了獲得高質(zhì)量的訓(xùn)練結(jié)果,數(shù)據(jù)集的規(guī)模通常需要保持在很大的程度上,使得訓(xùn)練過程變得更為復(fù)雜和昂貴。 3、需要大量的計(jì)算資源:訓(xùn)練大模型需要大量的計(jì)算資源,包括高性能的CPU、GPU或者TPU集群。這是因?yàn)榇?..
現(xiàn)在是大模型的時(shí)代,大模型的發(fā)展和應(yīng)用正日益深入各個(gè)領(lǐng)域。大模型以其強(qiáng)大的計(jì)算能力、豐富的數(shù)據(jù)支持和廣泛的應(yīng)用需求,正在推動(dòng)科學(xué)研究和工業(yè)創(chuàng)新進(jìn)入一個(gè)全新的階段。 1、計(jì)算能力的提升:隨著計(jì)算技術(shù)的不斷發(fā)展和硬件設(shè)備的進(jìn)步,現(xiàn)代計(jì)算機(jī)能夠處理更大規(guī)模的模型和數(shù)據(jù)。這為訓(xùn)練和應(yīng)用大模型提供了強(qiáng)大的計(jì)算支持,使得大模型的訓(xùn)練和推斷變得可行和高效。 2、數(shù)據(jù)的豐富性:隨著數(shù)字化時(shí)代的到來,數(shù)據(jù)的產(chǎn)生和積累呈現(xiàn)式的增長(zhǎng)。大型數(shù)據(jù)集的可用性為訓(xùn)練大模型提供了充分的數(shù)據(jù)支持,這些模型能夠從大量的數(shù)據(jù)中學(xué)習(xí)和挖掘有價(jià)值的信息。 3、深度學(xué)習(xí)的成功:深度學(xué)習(xí)作為一種強(qiáng)大的機(jī)器學(xué)習(xí)...
隨著人工智能技術(shù)的不斷發(fā)展,大模型可以通過深度學(xué)習(xí)算法對(duì)海量數(shù)據(jù)進(jìn)行訓(xùn)練,具備了強(qiáng)大的語義理解和生成能力。知識(shí)庫則是存儲(chǔ)了大量的結(jié)構(gòu)化數(shù)據(jù)和實(shí)體關(guān)系的數(shù)據(jù),將大模型與知識(shí)庫相結(jié)合,可以進(jìn)一步提升知識(shí)庫管理和應(yīng)用的智能性。大模型可以通過學(xué)習(xí)知識(shí)庫中的數(shù)據(jù),提升問題系統(tǒng)的準(zhǔn)確性和覆蓋范圍。另外,大模型通過分析用戶的興趣和偏好,結(jié)合知識(shí)庫中的實(shí)體關(guān)系,可以為用戶提供個(gè)性化的推薦服務(wù)。 杭州音視貝科技公司基于通用大模型研發(fā)了知識(shí)庫系統(tǒng)的垂直大模型。知識(shí)庫系統(tǒng)支持本地化部署,本地知識(shí)庫上傳,上傳文件類型可以是文檔、圖片、音頻或視頻,實(shí)現(xiàn)大模型對(duì)私域知識(shí)庫的再利用。對(duì)于數(shù)據(jù)隱私性要求...