AI大模型賦能智能服務(wù)場景主要有以下幾種:
1、智能熱線??筛鶕?jù)與居民/企業(yè)的交流內(nèi)容,快速判定并精細適配政策。根據(jù)**的不同需求,通過智能化解決方案,提供全天候的智能服務(wù)。
2、數(shù)字員工。將數(shù)字人對話場景無縫嵌入到服務(wù)業(yè)務(wù)流程中,為**提供“邊聊邊辦”的數(shù)字化服務(wù)。辦事**與數(shù)字人對話時,數(shù)字人可提供智能推送服務(wù)入口,完成業(yè)務(wù)咨詢、資訊推送、服務(wù)引導(dǎo)、事項辦理等服務(wù)。
3、智能營商環(huán)境分析。利用多模態(tài)大模技術(shù),為用戶提供精細的全生命周期辦事推薦、數(shù)據(jù)分析、信息展示等服務(wù),將“被動服務(wù)”模式轉(zhuǎn)變?yōu)椤爸鲃臃?wù)”模式。
4、智能審批。大模型+RPA的辦公助手,與審批系統(tǒng)集成,自動處理一些標(biāo)準(zhǔn)化審批請求,審批進程提醒,并自動提取審批過程中的關(guān)鍵指標(biāo)和統(tǒng)計數(shù)據(jù),生成報告和可視化圖表,提高審批效率和質(zhì)量。 大模型,其實是通過訓(xùn)練,從大量標(biāo)記和未標(biāo)記的數(shù)據(jù)中捕獲知識,并將知識存儲到大量的參數(shù)中。山東中小企業(yè)大模型應(yīng)用場景有哪些
知識庫的發(fā)展經(jīng)歷了四個階段,知識庫1.0階段,該階段是知識的保存和簡單搜索;知識庫2.0階段,該階段開始注重知識的分類整理;知識庫3.0階段,該階段已經(jīng)形成了完善的知識存儲、搜索、分享、權(quán)限控制等功能?,F(xiàn)在是知識庫4.0階段,即大模型跟知識庫結(jié)合的階段。
目前大模型知識庫系統(tǒng)已經(jīng)實現(xiàn)了兩大突破。是企業(yè)本地知識庫與大模型API結(jié)合,實現(xiàn)大模型對私域知識庫的再利用,比如基于企業(yè)知識庫的自然語言、基于企業(yè)資料的方案生成等;第二是基于可商用開源大模型進行本地化部署及微調(diào),使其完成成為企業(yè)私有化的本地大模型,可對企業(yè)各業(yè)務(wù)實現(xiàn)助力。 杭州深度學(xué)習(xí)大模型發(fā)展前景是什么“人工智能+醫(yī)療”是大勢所趨,AI大語言模型在醫(yī)療系統(tǒng)的應(yīng)用把醫(yī)療診斷與患者服務(wù)帶到了一個新的天地。
“大模型+領(lǐng)域知識”這一路線,是為了利用大模型的理解能力,將散落在企業(yè)內(nèi)外部各類數(shù)據(jù)源中的事實知識和流程知識提取出來,然后再利用大模型的生成能力輸出長文本或多輪對話。以前用判別式的模型解決意圖識別問題需要做大量的人工標(biāo)注工作,對新領(lǐng)域的業(yè)務(wù)解決能力非常弱,有了這類大模型以后,通過微調(diào)領(lǐng)域prompt,利用大模型的上下文學(xué)習(xí)能力,就能很快地適配到新領(lǐng)域的業(yè)務(wù)問題,其降低對數(shù)據(jù)標(biāo)注的依賴和模型定制化成本。
杭州音視貝科技公司的智能外呼、智能客服、智能質(zhì)檢等產(chǎn)品通過自研的對話引擎,擁抱大模型,充分挖掘企業(yè)各類對話場景數(shù)據(jù)價值,幫助企業(yè)實現(xiàn)更加智能的溝通、成本更低的運營維護。
大模型在機器學(xué)習(xí)和深度學(xué)習(xí)領(lǐng)域具有廣闊的發(fā)展前景。主要表現(xiàn)在以下幾個方面:
1、提高模型性能:大模型在處理自然語言處理、計算機視覺等任務(wù)時具有更強的表達能力和模式識別能力,可以提高模型的性能和準(zhǔn)確度。大模型能夠?qū)W習(xí)更復(fù)雜的特征和關(guān)系,以更準(zhǔn)確地理解和生成自然語言、識別和理解圖像等。
2、推動更深入的研究:大模型為研究人員提供了探索空間,可以幫助他們解決更復(fù)雜的問題和挑戰(zhàn)。研究人員可以利用大模型進行更深入的探究和實驗,挖掘新的領(lǐng)域和應(yīng)用。
3、改進自然語言處理:大模型在自然語言處理領(lǐng)域的發(fā)展前景廣闊。通過大模型,我們可以構(gòu)建更強大的語言模型,能夠生成更連貫、準(zhǔn)確和自然的文本。同時,大模型可以提高文本分類、情感分析、機器翻譯等自然語言處理任務(wù)的性能。
4、提升計算機視覺能力:大模型在計算機視覺領(lǐng)域也有很大的潛力。利用大模型,我們可以更好地理解圖像內(nèi)容、實現(xiàn)更精細的目標(biāo)檢測和圖像分割,甚至進行更細粒度的圖像生成和圖像理解。 通用大模型應(yīng)用在各行各業(yè)中缺乏專業(yè)度,這就是為什么“每個行業(yè)都應(yīng)該有屬于自己的大模型”。
與傳統(tǒng)的智能客服相比,大模型進一步降低了開發(fā)和運維成本。以前,各種場景都需要算法工程師標(biāo)注數(shù)據(jù)以訓(xùn)練特定任務(wù)的模型,因此開發(fā)成本較高?,F(xiàn)在,大模型本身的通用性好,不再需要很多算法工程師標(biāo)數(shù)據(jù),可以直接拿過來用,有時稍微標(biāo)幾條數(shù)據(jù)就夠了。企業(yè)部署外呼機器人、客服系統(tǒng)的成本會降低。原有30個話術(shù)師的工作量,現(xiàn)在2人即可完成,而且語義理解準(zhǔn)確度從85%提升至94%。
杭州音視貝科技公司的智能外呼、智能客服、智能質(zhì)檢等產(chǎn)品通過自研的對話引擎,擁抱大模型,充分挖掘企業(yè)各類對話場景數(shù)據(jù)價值,幫助企業(yè)實現(xiàn)更加智能的溝通、成本更低的運營維護。 隨著醫(yī)療信息化和生物技術(shù)數(shù)十年的高速發(fā)展,醫(yī)療數(shù)據(jù)的類型和規(guī)模正以前所未有的速度快速增長。廣州AI大模型國內(nèi)項目有哪些
研究人員和工程師正致力于解決這些問題,進一步推動大模型的發(fā)展和應(yīng)用。山東中小企業(yè)大模型應(yīng)用場景有哪些
傳統(tǒng)的知識庫搜索系統(tǒng)是基于關(guān)鍵詞匹配進行的,缺少對用戶問題理解和答案二次處理的能力。
杭州音視貝科技公司探索使用大語言模型,通過其對自然語言理解和生成的能力,揣摩用戶意圖,并對原始知識點進行匯總、整合,生成更準(zhǔn)確的回答。其具體操作思路是:
首先,使用傳統(tǒng)搜索技術(shù)構(gòu)建基礎(chǔ)知識庫查詢,提高回答的可控性;
其次,接入大模型,讓其發(fā)揮其強大的自然語言處理能力,對用戶請求進行糾錯,提取關(guān)鍵點等預(yù)處理,實現(xiàn)更精細的“理解”,對輸出結(jié)果在保證正確性的基礎(chǔ)上進行分析、推理,給出正確答案。私域知識庫解決不了問題,可以轉(zhuǎn)為人工處理,或接入互聯(lián)網(wǎng),尋求答案,系統(tǒng)會對此類問題進行標(biāo)注,機器強化學(xué)習(xí)。 山東中小企業(yè)大模型應(yīng)用場景有哪些