大模型訓(xùn)練過(guò)程復(fù)雜且成本高主要是由以下幾個(gè)因素導(dǎo)致的:
1、參數(shù)量大的模型通常擁有龐大的數(shù)據(jù)量,例如億級(jí)別的參數(shù)。這樣的龐大參數(shù)量需要更多的內(nèi)存和計(jì)算資源來(lái)存儲(chǔ)和處理,增加了訓(xùn)練過(guò)程的復(fù)雜性和成本。
2、需要大規(guī)模訓(xùn)練數(shù)據(jù):為了訓(xùn)練大模型,需要收集和準(zhǔn)備大規(guī)模的訓(xùn)練數(shù)據(jù)集。這些數(shù)據(jù)集包含了豐富的語(yǔ)言信息和知識(shí),需要耗費(fèi)大量時(shí)間和人力成本來(lái)收集、清理和標(biāo)注。同時(shí),為了獲得高質(zhì)量的訓(xùn)練結(jié)果,數(shù)據(jù)集的規(guī)模通常需要保持在很大的程度上,使得訓(xùn)練過(guò)程變得更為復(fù)雜和昂貴。
3、需要大量的計(jì)算資源:訓(xùn)練大模型需要大量的計(jì)算資源,包括高性能的CPU、GPU或者TPU集群。這是因?yàn)榇竽P托枰M(jìn)行大規(guī)模的矩陣運(yùn)算、梯度計(jì)算等復(fù)雜的計(jì)算操作,需要更多的并行計(jì)算能力和存儲(chǔ)資源。購(gòu)買(mǎi)和配置這樣的計(jì)算資源需要巨額的投入,因此訓(xùn)練成本較高。
4、訓(xùn)練時(shí)間較長(zhǎng):由于大模型參數(shù)量巨大和計(jì)算復(fù)雜度高,訓(xùn)練過(guò)程通常需要較長(zhǎng)的時(shí)間。訓(xùn)練時(shí)間的長(zhǎng)短取決于數(shù)據(jù)集的大小、計(jì)算資源的配置和算法的優(yōu)化等因素。長(zhǎng)時(shí)間的訓(xùn)練過(guò)程不僅增加了計(jì)算資源的利用成本,也會(huì)導(dǎo)致周期性的停機(jī)和網(wǎng)絡(luò)傳輸問(wèn)題,進(jìn)一步加大了訓(xùn)練時(shí)間和成本。 曾經(jīng)一度火熱的“互聯(lián)網(wǎng)+”風(fēng)潮推進(jìn)了傳統(tǒng)行業(yè)的信息化、數(shù)據(jù)化,現(xiàn)在來(lái)看,其實(shí)都是為人工智能埋下伏筆。山東AI大模型特點(diǎn)是什么
對(duì)商家而言,大模型切合實(shí)際的應(yīng)用場(chǎng)景莫過(guò)于電商行業(yè)。首先是客服領(lǐng)域。隨著電商行業(yè)發(fā)展,消費(fèi)者對(duì)服務(wù)質(zhì)量的要求日益提高,客服的作用也越來(lái)越突出。商家為了節(jié)約經(jīng)營(yíng)成本,會(huì)采用人機(jī)結(jié)合的模式,先用智能客服回答一部分簡(jiǎn)單的問(wèn)題,機(jī)器人解決不了的再靠人工客服解決。想法是好的,但目前各大平臺(tái)的智能客服往往只能根據(jù)關(guān)鍵詞給出預(yù)設(shè)好的答案,無(wú)法真正理解消費(fèi)者的問(wèn)題,人工客服的壓力依然很大。其次是營(yíng)銷(xiāo)獲客領(lǐng)域。直播帶貨的普及讓“人找貨”變成了“貨找人”。平臺(tái)利用大模型的人工智能算法實(shí)現(xiàn)海量數(shù)據(jù)集的深度學(xué)習(xí),分析消費(fèi)者的行為,預(yù)測(cè)哪些產(chǎn)品可能會(huì)吸引消費(fèi)者點(diǎn)擊購(gòu)買(mǎi),從而為他們推薦商品。這種精細(xì)營(yíng)銷(xiāo),一方面平臺(tái)高效利用流量,另一方面,也降低了消費(fèi)者的選擇成本。福州行業(yè)大模型國(guó)內(nèi)項(xiàng)目有哪些隨著技術(shù)的不斷進(jìn)步和創(chuàng)新,我們可以期待大模型在各個(gè)領(lǐng)域繼續(xù)取得更多突破和應(yīng)用。
大模型的訓(xùn)練通常需要大量的計(jì)算資源(如GPU、TPU等)和時(shí)間。同時(shí),還需要充足的數(shù)據(jù)集和合適的訓(xùn)練策略來(lái)獲得更好的性能。因此,進(jìn)行大模型訓(xùn)練需要具備一定的技術(shù)和資源條件。
1、數(shù)據(jù)準(zhǔn)備:收集和準(zhǔn)備用于訓(xùn)練的數(shù)據(jù)集??梢砸延械墓_(kāi)數(shù)據(jù)集,也可以是您自己收集的數(shù)據(jù)。數(shù)據(jù)集應(yīng)該包含適當(dāng)?shù)臉?biāo)注或注釋?zhuān)员隳P湍軌驅(qū)W習(xí)特定的任務(wù)。
2、數(shù)據(jù)預(yù)處理:包括文本清洗、分詞、建立詞表、編碼等處理步驟,以便將數(shù)據(jù)轉(zhuǎn)換為模型可以處理的格式。
3、構(gòu)建模型結(jié)構(gòu):選擇合適的模型結(jié)構(gòu)是訓(xùn)練一個(gè)大模型的關(guān)鍵。根據(jù)任務(wù)的要求和具體情況來(lái)選擇適合的模型結(jié)構(gòu)。
4、模型初始化:在訓(xùn)練開(kāi)始之前,需要對(duì)模型進(jìn)行初始化。這通常是通過(guò)對(duì)模型進(jìn)行隨機(jī)初始化或者使用預(yù)訓(xùn)練的模型權(quán)重來(lái)實(shí)現(xiàn)。
5、模型訓(xùn)練:使用預(yù)處理的訓(xùn)練數(shù)據(jù)集,將其輸入到模型中進(jìn)行訓(xùn)練。在訓(xùn)練過(guò)程中,模型通過(guò)迭代優(yōu)化損失函數(shù)來(lái)不斷更新模型參數(shù)。
6、超參數(shù)調(diào)整:在模型訓(xùn)練過(guò)程中,需要調(diào)整一些超參數(shù)(如學(xué)習(xí)率、批大小、正則化系數(shù)等)來(lái)優(yōu)化訓(xùn)練過(guò)程和模型性能。
7、模型評(píng)估和驗(yàn)證:在訓(xùn)練過(guò)程中,需要使用驗(yàn)證集對(duì)模型進(jìn)行評(píng)估和驗(yàn)證。根據(jù)評(píng)估結(jié)果,可以調(diào)整模型結(jié)構(gòu)和超參數(shù)。
相比ChatGPT這種通用大模型,國(guó)內(nèi)的大模型產(chǎn)品,更多注重應(yīng)用和場(chǎng)景,即垂直大模型、行業(yè)大模型、產(chǎn)業(yè)大模型。下面我們就來(lái)說(shuō)說(shuō)大模型在電商領(lǐng)域的應(yīng)用:
1、搜索與推薦:在電商領(lǐng)域重要的搜索與推薦功能上,大數(shù)據(jù)通過(guò)分析用戶的購(gòu)買(mǎi)歷史、瀏覽行為、興趣偏好等,幫助用戶更快地找到他們感興趣的商品。
2、個(gè)性化營(yíng)銷(xiāo):利用大模型分析用戶的購(gòu)買(mǎi)行為和偏好,通過(guò)向用戶推送個(gè)性化的優(yōu)惠券、促銷(xiāo)活動(dòng)等,可以提高用戶參與度和轉(zhuǎn)化率。
3、客戶服務(wù)與智能客服:大模型可以應(yīng)用于電商企業(yè)的客戶服務(wù)系統(tǒng)中,幫助識(shí)別和處理客戶問(wèn)題和投訴。自動(dòng)回答常見(jiàn)問(wèn)題,解決簡(jiǎn)單的客戶需求,并及時(shí)將復(fù)雜問(wèn)題轉(zhuǎn)接至人工客服處理。
4、庫(kù)存管理與預(yù)測(cè):通過(guò)建立大模型,可以分析歷史數(shù)字、季節(jié)性因素、市場(chǎng)變化等因素對(duì)庫(kù)存和銷(xiāo)售造成的影響,從而提供更準(zhǔn)確的庫(kù)存管理策略,避免庫(kù)存積壓或缺貨的問(wèn)題。 大模型的基礎(chǔ)數(shù)據(jù)來(lái)源包括網(wǎng)絡(luò)文本、書(shū)籍和文學(xué)作品、維基百科和知識(shí)圖譜,以及其他專(zhuān)業(yè)領(lǐng)域的數(shù)據(jù)。
大模型在機(jī)器學(xué)習(xí)領(lǐng)域取得了很大的發(fā)展,并且得到了廣泛的應(yīng)用。
1、自然語(yǔ)言處理領(lǐng)域:自然語(yǔ)言處理是大模型應(yīng)用多的領(lǐng)域之一。許多大型語(yǔ)言模型,如GPT-3、GPT-2和BERT等,已經(jīng)取得了突破。這些模型能夠生成更具語(yǔ)義和連貫性的文本,實(shí)現(xiàn)更準(zhǔn)確和自然的對(duì)話、摘要和翻譯等任務(wù)。
2、計(jì)算機(jī)視覺(jué)領(lǐng)域:大模型在計(jì)算機(jī)視覺(jué)領(lǐng)域也取得了進(jìn)展。以圖像識(shí)別為例,模型如ResNet、Inception和EfficientNet等深層網(wǎng)絡(luò)結(jié)構(gòu),以及預(yù)訓(xùn)練模型如ImageNet權(quán)重等,都**提高了圖像分類(lèi)和目標(biāo)檢測(cè)的準(zhǔn)確性和效率。 很多企業(yè)在探索大模型與小模型級(jí)聯(lián),小模型連接應(yīng)用,大模型增強(qiáng)小模型能力,這是我們比較看好的未來(lái)方向。福州行業(yè)大模型怎么訓(xùn)練
7 月 26 日,OpenAI 推出安卓版 ChatGPT,目前在美國(guó)、印度、孟加拉國(guó)和巴西四國(guó)使用。山東AI大模型特點(diǎn)是什么
知識(shí)庫(kù)的發(fā)展經(jīng)歷了四個(gè)階段,知識(shí)庫(kù)1.0階段,該階段是知識(shí)的保存和簡(jiǎn)單搜索;知識(shí)庫(kù)2.0階段,該階段開(kāi)始注重知識(shí)的分類(lèi)整理;知識(shí)庫(kù)3.0階段,該階段已經(jīng)形成了完善的知識(shí)存儲(chǔ)、搜索、分享、權(quán)限控制等功能?,F(xiàn)在是知識(shí)庫(kù)4.0階段,即大模型跟知識(shí)庫(kù)結(jié)合的階段。
目前大模型知識(shí)庫(kù)系統(tǒng)已經(jīng)實(shí)現(xiàn)了兩大突破。是企業(yè)本地知識(shí)庫(kù)與大模型API結(jié)合,實(shí)現(xiàn)大模型對(duì)私域知識(shí)庫(kù)的再利用,比如基于企業(yè)知識(shí)庫(kù)的自然語(yǔ)言、基于企業(yè)資料的方案生成等;第二是基于可商用開(kāi)源大模型進(jìn)行本地化部署及微調(diào),使其完成成為企業(yè)私有化的本地大模型,可對(duì)企業(yè)各業(yè)務(wù)實(shí)現(xiàn)助力。 山東AI大模型特點(diǎn)是什么
杭州音視貝科技有限公司是一家集研發(fā)、生產(chǎn)、咨詢、規(guī)劃、銷(xiāo)售、服務(wù)于一體的服務(wù)型企業(yè)。公司成立于2020-03-05,多年來(lái)在智能外呼系統(tǒng),智能客服系統(tǒng),智能質(zhì)檢系統(tǒng),呼叫中心行業(yè)形成了成熟、可靠的研發(fā)、生產(chǎn)體系。主要經(jīng)營(yíng)智能外呼系統(tǒng),智能客服系統(tǒng),智能質(zhì)檢系統(tǒng),呼叫中心等產(chǎn)品服務(wù),現(xiàn)在公司擁有一支經(jīng)驗(yàn)豐富的研發(fā)設(shè)計(jì)團(tuán)隊(duì),對(duì)于產(chǎn)品研發(fā)和生產(chǎn)要求極為嚴(yán)格,完全按照行業(yè)標(biāo)準(zhǔn)研發(fā)和生產(chǎn)。杭州音視貝科技有限公司研發(fā)團(tuán)隊(duì)不斷緊跟智能外呼系統(tǒng),智能客服系統(tǒng),智能質(zhì)檢系統(tǒng),呼叫中心行業(yè)發(fā)展趨勢(shì),研發(fā)與改進(jìn)新的產(chǎn)品,從而保證公司在新技術(shù)研發(fā)方面不斷提升,確保公司產(chǎn)品符合行業(yè)標(biāo)準(zhǔn)和要求。杭州音視貝科技有限公司注重以人為本、團(tuán)隊(duì)合作的企業(yè)文化,通過(guò)保證智能外呼系統(tǒng),智能客服系統(tǒng),智能質(zhì)檢系統(tǒng),呼叫中心產(chǎn)品質(zhì)量合格,以誠(chéng)信經(jīng)營(yíng)、用戶至上、價(jià)格合理來(lái)服務(wù)客戶。建立一切以客戶需求為前提的工作目標(biāo),真誠(chéng)歡迎新老客戶前來(lái)洽談業(yè)務(wù)。