積分球內(nèi)部涂層的選擇:在選擇積分球時(shí),漫反射涂層的選擇非常重要,漫反射涂層或材料的反射率——越高越好。“更高的反射率意味著光在被吸收之前在球體內(nèi)有更多的反射,”Labsphere銷售和營(yíng)銷副總裁Peter Weitzman說,“因此集成度更好,測(cè)量精度也更好?!甭瓷渫苛蠂娡糠绞酵ǔ0▏婌F式或粉末式。積分球內(nèi)部噴涂哪種漫反射涂層,取決于系統(tǒng)使用環(huán)境,以及使用積分球測(cè)試的波段范圍。針對(duì)極l端條件或者小積分球,燒結(jié)聚四氟乙烯(PTFE或Teflon)提供非常好的性能。例如Labsphere的Spectralon EPV漫反射材料可用于深紫外、極l端物理和真空中。典型的硫酸鋇涂層,盡管也可在近紫外和紅外使用,但主要用于可見光波段范圍。鍍金漫反射涂層主要應(yīng)用于NIR-MIR波段范圍。每種漫反射涂層的較佳使用波段范圍和概述詳見生產(chǎn)商的網(wǎng)站發(fā)布內(nèi)容。積分球在環(huán)境科學(xué)中,如大氣污染、水質(zhì)分布等研究中,發(fā)揮著關(guān)鍵作用。星光Helios標(biāo)準(zhǔn)光源傳感器
積分球(Integrating sphere)又稱為光通球、光度球,是一個(gè)中空的完整球殼。積分球多由金屬資料制成,內(nèi)壁涂白色高漫反射層(通常是氧化鎂或硫酸鋇),且球內(nèi)壁各點(diǎn)漫射均勻。也有積分球采用高反射高分子資料制成,例如Spectralon資料。光源在球壁上任意一點(diǎn)上發(fā)生的光照度是由屢次反射光發(fā)生的光照度疊加而成的。這樣,進(jìn)入積分球的光經(jīng)過內(nèi)壁涂層屢次反射,在內(nèi)壁上構(gòu)成均勻照度。積分球的詳細(xì)介紹,積分球常用于測(cè)驗(yàn)光源的光通量、色溫、光效等參數(shù),也可用于丈量物體的反射率和透過率等。星光Helios標(biāo)準(zhǔn)光源傳感器積分球又稱為光通球,是一個(gè)中空的完整球殼。
擋板,一般來說,進(jìn)入積分球的光不應(yīng)直接照射探測(cè)器元件或探測(cè)器收集直接反射率的球壁區(qū)域。為了達(dá)到這一目的,在積分球設(shè)計(jì)中經(jīng)常使用擋板。然而,由于該裝置不是一個(gè)完美的積分球,擋板會(huì)導(dǎo)致測(cè)試結(jié)果不準(zhǔn)確。入射到擋板上的光不能均勻地照亮積分球的其余部分。建議在球體設(shè)計(jì)中盡量減少擋板的數(shù)量。應(yīng)用,任何應(yīng)用的積分球的設(shè)計(jì)都涉及一些基本參數(shù)。這些包括基于積分球端口開口和外部設(shè)備的數(shù)量和尺寸選擇較佳積分球直徑。在選擇積分球內(nèi)部涂層的過程中,應(yīng)考慮光譜范圍和性能要求。還應(yīng)考慮使用擋板來控制入射輻射度和探測(cè)器視場(chǎng),以及使用輻射度測(cè)量模型來確定積分球與探測(cè)系統(tǒng)的耦合效率。
內(nèi)置光源積分球的被測(cè)光源安裝在積分球內(nèi)部,于探測(cè)端球壁位置開一個(gè)窗口用來連接探測(cè)裝置,光源與探測(cè)窗口之間有一塊隔光板用來放置光源發(fā)出光直接照射在探測(cè)端口,光在積分球內(nèi)壁進(jìn)行充分的漫反射后,在內(nèi)壁行程均勻照度,后照射到光電探測(cè)端口,進(jìn)而得出光束的光學(xué)性質(zhì)。積分球的進(jìn)光口和探測(cè)端口分別各開一個(gè)窗口,積分球內(nèi)部同樣放置遮光板放置光束直接照射探測(cè)端口,光束從進(jìn)光口進(jìn)入積分球,經(jīng)過充分的漫反射后行程均勻照度,后從積分球探測(cè)端口進(jìn)行光學(xué)性質(zhì)測(cè)量。積分球內(nèi)的光源經(jīng)過處理,可以模擬不同的光照條件。
學(xué)科發(fā)現(xiàn),光學(xué)的起源在西方很早就有光學(xué)知識(shí)的記載,歐幾里得(Euclid,公元前約330~260)的<反射光學(xué)>(Catoptrica)研究了光的反射;阿拉伯學(xué)者阿勒·哈增(AI-Hazen,965~1038)寫過一部<光學(xué)全書>,討論了許多光學(xué)的現(xiàn)象。歷史發(fā)展,光學(xué)是一門有悠久歷史的學(xué)科,它的發(fā)展史可追溯到2000多年前。人類對(duì)光的研究,較初主要是試圖回答“人怎么能看見周圍的物體?”之類問題。約在公元前400多年(先秦時(shí)代),中國(guó)的《墨經(jīng)》中記錄了世界上較早的光學(xué)知識(shí)。它有八條關(guān)于光學(xué)的記載,敘述影的定義和生成,光的直線傳播性和小孔成像,并且以嚴(yán)謹(jǐn)?shù)奈淖钟懻摿嗽谄矫骁R、凹球面鏡和凸球面鏡中物和像的關(guān)系。積分球作為光學(xué)測(cè)量工具,廣泛應(yīng)用于光源均勻性檢測(cè)。真空太陽(yáng)光模擬器校準(zhǔn)系統(tǒng)
積分球的內(nèi)壁應(yīng)是良好的球面,通常要求它相對(duì)于理想球面的偏差應(yīng)不大于內(nèi)徑的0.2%。星光Helios標(biāo)準(zhǔn)光源傳感器
積分球的理想狀態(tài):積分球內(nèi)表面是一個(gè)完整的幾何球面,半徑處處相等;球體的內(nèi)壁是中性均勻漫射面,對(duì)于各種波長(zhǎng)的入射光,具有相同的漫反射比;球體中不存在物體,光源也被視為只發(fā)光而無實(shí)物的抽象光源。積分球測(cè)量的影響因素:球的內(nèi)壁是均勻的理想擴(kuò)散層,服從朗伯定則;球體內(nèi)壁面各點(diǎn)反射率相等;球體內(nèi)壁的白色涂層漫射為中性;球的半徑處處相等,球體內(nèi)除燈外無其它物體存在;因此,積分球內(nèi)壁起球、剝落、黃變等都會(huì)影響其測(cè)量精度。星光Helios標(biāo)準(zhǔn)光源傳感器