但在中MOSFET及IGBT主流器件市場上,90%主要依賴進(jìn)口,基本被國外歐美、日本企業(yè)壟斷。國外企業(yè)如英飛凌、ABB、三菱等廠商研發(fā)的IGBT器件產(chǎn)品規(guī)格涵蓋電壓600V-6500V,電流2A-3600A,已形成完善的IGBT產(chǎn)品系列。英飛凌、三菱、ABB在1700V以上電壓等級(jí)的工業(yè)IGBT領(lǐng)域占優(yōu)勢;在3300V以上電壓等級(jí)的高壓IGBT技術(shù)領(lǐng)域幾乎處于壟斷地位。在大功率溝槽技術(shù)方面,英飛凌與三菱公司處于國際水平。西門康、仙童等在1700V及以下電壓等級(jí)的消費(fèi)IGBT領(lǐng)域處于優(yōu)勢地位。盡管我國擁有大的功率半導(dǎo)體市場,但是目前國內(nèi)功率半導(dǎo)體產(chǎn)品的研發(fā)與國際大公司相比還存在很大差距,特別是IGBT等器件差距更加明顯。技術(shù)均掌握在發(fā)達(dá)國家企業(yè)手中,IGBT技術(shù)集成度高的特點(diǎn)又導(dǎo)致了較高的市場集中度。跟國內(nèi)廠商相比,英飛凌、三菱和富士電機(jī)等國際廠商占有的市場優(yōu)勢。形成這種局面的原因主要是:1、國際廠商起步早,研發(fā)投入大,形成了較高的壁壘。2、國外制造業(yè)水平比國內(nèi)要高很多,一定程度上支撐了國際廠商的技術(shù)優(yōu)勢。中國功率半導(dǎo)體產(chǎn)業(yè)的發(fā)展必須改變目前技術(shù)處于劣勢的局面,特別是要在產(chǎn)業(yè)鏈上游層面取得突破,改變目前功率器件領(lǐng)域封裝強(qiáng)于芯片的現(xiàn)狀。總的來說。減小N-層的電阻,使IGBT在高電壓時(shí),也具有低的通態(tài)電壓。廣東加工Mitsubishi三菱IGBT模塊
目前,為了防止高dV/dt應(yīng)用于橋式電路中的IGBT時(shí)產(chǎn)生瞬時(shí)集電極電流,設(shè)計(jì)人員一般會(huì)設(shè)計(jì)柵特性是需要負(fù)偏置柵驅(qū)動(dòng)的IGBT。然而提供負(fù)偏置增加了電路的復(fù)雜性,也很難使用高壓集成電路(HVIC)柵驅(qū)動(dòng)器,因?yàn)檫@些IC是專為接地操作而設(shè)計(jì)──與控制電路相同。因此,研發(fā)有高dV/dt能力的IGBT以用于“單正向”柵驅(qū)動(dòng)器便為理想了。這樣的器件已經(jīng)開發(fā)出來了。器件與負(fù)偏置柵驅(qū)動(dòng)IGBT進(jìn)行性能表現(xiàn)的比較測試,在高dV/dt條件下得出優(yōu)越的測試結(jié)果。為了理解dV/dt感生開通現(xiàn)象,我們必須考慮跟IGBT結(jié)構(gòu)有關(guān)的電容。圖1顯示了三個(gè)主要的IGBT寄生電容。集電極到發(fā)射極電容C,集電極到柵極電容C和柵極到發(fā)射極電容CGE。圖1IGBT器件的寄生電容這些電容對橋式變換器設(shè)計(jì)是非常重要的,大部份的IGBT數(shù)據(jù)表中都給出這些參數(shù):輸出電容,COES=CCE+CGC(CGE短路)輸入電容,CIES=CGC+CGE(CCE短路)反向傳輸電容,CRES=CGC圖2半橋電路圖2給出了用于多數(shù)變換器設(shè)計(jì)中的典型半橋電路。集電極到柵極電容C和柵極到發(fā)射極電容C組成了動(dòng)態(tài)分壓器。當(dāng)IGBT(Q2)開通時(shí),低端IGBT(Q1)的發(fā)射極上的dV/dt會(huì)在其柵極上產(chǎn)生正電壓脈沖。對于任何IGBT。山西Mitsubishi三菱IGBT模塊供應(yīng)商IGBT的伏安特性是指以柵源電壓Ugs為參變量時(shí),漏極電流與柵極電壓之間的關(guān)系曲線。
所述阱區(qū)位于所述漂移區(qū)表面。所述電荷存儲(chǔ)層位于所述漂移區(qū)的頂部區(qū)域且位于所述漂移區(qū)和所述阱區(qū)交界面的底部,所述電荷存儲(chǔ)層具有一導(dǎo)電類重?fù)诫s;所述電荷存儲(chǔ)層用于阻擋第二導(dǎo)電類載流子從所述漂移區(qū)中進(jìn)入到所述阱區(qū)中。各所述溝槽穿過所述阱區(qū)和所述電荷存儲(chǔ)層且各所述溝槽的進(jìn)入到所述漂移區(qū)中;被所述多晶硅柵側(cè)面覆蓋的所述阱區(qū)的表面用于形成溝道。步驟八、采用光刻定義加一導(dǎo)電類型重?fù)诫s離子注入工藝在所述多晶硅柵兩側(cè)的所述阱區(qū)的表面形成發(fā)射區(qū)。步驟九、形成層間膜、接觸孔、正面金屬層,所述接觸孔穿過所述層間膜;對所述正面金屬層進(jìn)行圖形化形成金屬柵極和金屬源極。所述多晶硅柵通過頂部對應(yīng)的接觸孔連接到所述金屬柵極。所述發(fā)射區(qū)通過頂部的對應(yīng)的接觸孔連接到所述金屬源極;令所述發(fā)射區(qū)頂部對應(yīng)的接觸孔為源極接觸孔,所述源極接觸孔還和穿過所述發(fā)射區(qū)和所述阱區(qū)接觸。所述一屏蔽多晶硅和所述第二屏蔽多晶硅也分布通過對應(yīng)的接觸孔連接到所述金屬源極。步驟十、對所述半導(dǎo)體襯底進(jìn)行背面減薄,進(jìn)行第二導(dǎo)電類型重?fù)诫s注入并進(jìn)行退火在所述漂移區(qū)的底部表面形成有由第二導(dǎo)電類重?fù)诫s區(qū)組成的集電區(qū)。
IGBT模塊是由IGBT(絕緣柵雙極型晶體管芯片)與FWD(續(xù)流二極管芯片)通過特定的電路橋接封裝而成的模塊化半導(dǎo)體產(chǎn)品;封裝后的IGBT模塊直接應(yīng)用于變頻器、UPS不間斷電源等設(shè)備上;IGBT模塊具有節(jié)能、安裝維修方便、散熱穩(wěn)定等特點(diǎn);當(dāng)前市場上銷售的多為此類模塊化產(chǎn)品,一般所說的IGBT也指IGBT模塊;隨著節(jié)能環(huán)保等理念的推進(jìn),此類產(chǎn)品在市場上將越來越多見。IGBT模塊連接圖IGBT模塊的安裝:為了使接觸熱阻變小,推薦在散熱器與IGBT模塊的安裝面之間涂敷散熱絕緣混合劑。涂敷散熱絕緣混合劑時(shí),在散熱器或IGBT模塊的金屬基板面上涂敷。如圖1所示。隨著IGBT模塊與散熱器通過螺釘夾緊,散熱絕緣混合劑就散開,使IGBT模塊與散熱器均一接觸。上圖:兩點(diǎn)安裝型模塊下圖:一點(diǎn)安裝型模塊圖1散熱絕緣混合劑的涂敷方法涂敷同等厚度的導(dǎo)熱膏(特別是涂敷厚度較厚的情況下)可使無銅底板的模塊比有銅底板散熱的模塊的發(fā)熱更嚴(yán)重,引至模塊的結(jié)溫超出模塊的安全工作的結(jié)溫上限(Tj《125℃或125℃)。因?yàn)樯崞鞅砻娌黄秸鸬膶?dǎo)熱膏的厚度增加,會(huì)增大接觸熱阻,從而減慢熱量的擴(kuò)散速度。IGBT模塊安裝時(shí),螺釘?shù)膴A緊方法如圖2所示。另外,螺釘應(yīng)以推薦的夾緊力矩范圍予以夾緊。它與MOSFET的轉(zhuǎn)移特性相同,當(dāng)柵源電壓小于開啟電壓Ugs(th)時(shí),IGBT處于關(guān)斷狀態(tài)。
溝道在緊靠柵區(qū)邊界形成。在C、E兩極之間的P型區(qū)(包括P+和P-區(qū))(溝道在該區(qū)域形成),稱為亞溝道區(qū)(Subchannelregion)。而在漏區(qū)另一側(cè)的P+區(qū)稱為漏注入?yún)^(qū)(Draininjector),它是IGBT特有的功能區(qū),與漏區(qū)和亞溝道區(qū)一起形成PNP雙極晶體管,起發(fā)射極的作用,向漏極注入空穴,進(jìn)行導(dǎo)電調(diào)制,以降低器件的通態(tài)電壓。附于漏注入?yún)^(qū)上的電極稱為漏極(即集電極C)。IGBT的開關(guān)作用是通過加正向柵極電壓形成溝道,給PNP(原來為NPN)晶體管提供基極電流,使IGBT導(dǎo)通。反之,加反向門極電壓消除溝道,切斷基極電流,使IGBT關(guān)斷。IGBT的驅(qū)動(dòng)方法和MOSFET基本相同,只需控制輸入極N-溝道MOSFET,所以具有高輸入阻抗特性。當(dāng)MOSFET的溝道形成后,從P+基極注入到N-層的空穴(少子),對N-層進(jìn)行電導(dǎo)調(diào)制,減小N-層的電阻,使IGBT在高電壓時(shí),也具有低的通態(tài)電壓。IGBT原理方法IGBT是將強(qiáng)電流、高壓應(yīng)用和快速終端設(shè)備用垂直功率MOSFET的自然進(jìn)化。由于實(shí)現(xiàn)一個(gè)較高的擊穿電壓BVDSS需要一個(gè)源漏通道,而這個(gè)通道卻具有很高的電阻率,因而造成功率MOSFET具有RDS(on)數(shù)值高的特征,IGBT消除了現(xiàn)有功率MOSFET的這些主要缺點(diǎn)。雖然新一代功率MOSFET器件大幅度改進(jìn)了RDS(on)特性。IGBT綜合了以上兩種器件的優(yōu)點(diǎn),驅(qū)動(dòng)功率小而飽和壓降低。湖南定制Mitsubishi三菱IGBT模塊報(bào)價(jià)
封裝后的IGBT模塊直接應(yīng)用于變頻器、UPS不間斷電源等設(shè)備上。廣東加工Mitsubishi三菱IGBT模塊
分兩種情況:②若柵-射極電壓UGE<Uth,溝道不能形成,IGBT呈正向阻斷狀態(tài)。②若柵-射極電壓UGE>Uth,柵極溝道形成,IGBT呈導(dǎo)通狀態(tài)(正常工作)。此時(shí),空穴從P+區(qū)注入到N基區(qū)進(jìn)行電導(dǎo)調(diào)制,減少N基區(qū)電阻RN的值,使IGBT通態(tài)壓降降低。IGBT各世代的技術(shù)差異回顧功率器件過去幾十年的發(fā)展,1950-60年代雙極型器件SCR,GTR,GTO,該時(shí)段的產(chǎn)品通態(tài)電阻很小;電流控制,控制電路復(fù)雜且功耗大;1970年代單極型器件VD-MOSFET。但隨著終端應(yīng)用的需求,需要一種新功率器件能同時(shí)滿足:驅(qū)動(dòng)電路簡單,以降低成本與開關(guān)功耗、通態(tài)壓降較低,以減小器件自身的功耗。1980年代初,試圖把MOS與BJT技術(shù)集成起來的研究,導(dǎo)致了IGBT的發(fā)明。1985年前后美國GE成功試制工業(yè)樣品(可惜后來放棄)。自此以后,IGBT主要經(jīng)歷了6代技術(shù)及工藝改進(jìn)。從結(jié)構(gòu)上講,IGBT主要有三個(gè)發(fā)展方向:1)IGBT縱向結(jié)構(gòu):非透明集電區(qū)NPT型、帶緩沖層的PT型、透明集電區(qū)NPT型和FS電場截止型;2)IGBT柵極結(jié)構(gòu):平面柵機(jī)構(gòu)、Trench溝槽型結(jié)構(gòu);3)硅片加工工藝:外延生長技術(shù)、區(qū)熔硅單晶;其發(fā)展趨勢是:①降低損耗②降低生產(chǎn)成本總功耗=通態(tài)損耗(與飽和電壓VCEsat有關(guān))+開關(guān)損耗(EoffEon)。廣東加工Mitsubishi三菱IGBT模塊